Normalized defining polynomial
\( x^{8} + 44x^{6} + 1326x^{4} + 23816x^{2} + 157396 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(439971370500096\)
\(\medspace = 2^{22}\cdot 3^{4}\cdot 109^{3}\)
|
| |
| Root discriminant: | \(67.67\) |
| |
| Galois root discriminant: | $2^{11/4}3^{1/2}109^{1/2}\approx 121.6483897002836$ | ||
| Ramified primes: |
\(2\), \(3\), \(109\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{109}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-3}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{42}a^{4}-\frac{10}{21}a^{2}-\frac{10}{21}$, $\frac{1}{42}a^{5}-\frac{10}{21}a^{3}-\frac{10}{21}a$, $\frac{1}{4410}a^{6}-\frac{4}{735}a^{4}-\frac{172}{735}a^{2}+\frac{901}{2205}$, $\frac{1}{83790}a^{7}+\frac{97}{27930}a^{5}-\frac{3427}{13965}a^{3}+\frac{2161}{41895}a$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $3$, $7$ |
Class group and class number
| Ideal class group: | $C_{20}$, which has order $20$ |
| |
| Narrow class group: | $C_{20}$, which has order $20$ |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -\frac{1}{735} a^{6} - \frac{19}{490} a^{4} - \frac{286}{245} a^{2} - \frac{9572}{735} \)
(order $6$)
|
| |
| Fundamental units: |
$\frac{1}{4410}a^{6}+\frac{9}{490}a^{4}+\frac{71}{245}a^{2}+\frac{2056}{2205}$, $\frac{2603539703}{16758}a^{7}+\frac{201752297}{2205}a^{6}+\frac{24865361785}{5586}a^{5}+\frac{1570192301}{490}a^{4}+\frac{384173750141}{2793}a^{3}+\frac{21795082914}{245}a^{2}+\frac{13297889924294}{8379}a+\frac{2935704299599}{2205}$, $\frac{4546399922}{41895}a^{7}-\frac{573434233}{2205}a^{6}+\frac{99378565403}{27930}a^{5}+\frac{1418328061}{490}a^{4}+\frac{462289102792}{13965}a^{3}+\frac{65512512504}{245}a^{2}+\frac{2555400127864}{41895}a+\frac{5501951065699}{2205}$
|
| |
| Regulator: | \( 18915.0024688 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 18915.0024688 \cdot 20}{6\cdot\sqrt{439971370500096}}\cr\approx \mathstrut & 4.68481464174 \end{aligned}\]
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $D_{8}$ |
| Character table for $D_{8}$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.0.62784.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 16 |
| Degree 8 sibling: | 8.2.15985626461503488.3 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{4}$ | ${\href{/padicField/7.1.0.1}{1} }^{8}$ | ${\href{/padicField/11.8.0.1}{8} }$ | ${\href{/padicField/13.2.0.1}{2} }^{3}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }$ | ${\href{/padicField/19.2.0.1}{2} }^{3}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }$ | ${\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.2.0.1}{2} }^{3}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }$ | ${\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.8.0.1}{8} }$ | ${\href{/padicField/53.8.0.1}{8} }$ | ${\href{/padicField/59.8.0.1}{8} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.4.22a1.72 | $x^{8} + 12 x^{7} + 42 x^{6} + 88 x^{5} + 127 x^{4} + 128 x^{3} + 102 x^{2} + 76 x + 23$ | $4$ | $2$ | $22$ | $C_8$ | $$[3, 4]^{2}$$ |
|
\(3\)
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
|
\(109\)
| 109.1.2.1a1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 109.2.1.0a1.1 | $x^{2} + 108 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 109.2.2.2a1.2 | $x^{4} + 216 x^{3} + 11676 x^{2} + 1296 x + 145$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |