Normalized defining polynomial
\( x^{8} + 8x^{6} + 13x^{4} - 12x^{2} + 36 \)
Invariants
Degree: | $8$ |
| |
Signature: | $[0, 4]$ |
| |
Discriminant: |
\(3317760000\)
\(\medspace = 2^{16}\cdot 3^{4}\cdot 5^{4}\)
|
| |
Root discriminant: | \(15.49\) |
| |
Galois root discriminant: | $2^{2}3^{1/2}5^{1/2}\approx 15.491933384829668$ | ||
Ramified primes: |
\(2\), \(3\), \(5\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_2^3$ |
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(120=2^{3}\cdot 3\cdot 5\) | ||
Dirichlet character group: | $\lbrace$$\chi_{120}(1,·)$, $\chi_{120}(71,·)$, $\chi_{120}(11,·)$, $\chi_{120}(29,·)$, $\chi_{120}(79,·)$, $\chi_{120}(19,·)$, $\chi_{120}(89,·)$, $\chi_{120}(61,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{-30}) \), 8.0.3317760000.6$^{4}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3}a^{4}+\frac{1}{3}a^{2}$, $\frac{1}{3}a^{5}+\frac{1}{3}a^{3}$, $\frac{1}{24}a^{6}-\frac{1}{12}a^{4}+\frac{3}{8}a^{2}-\frac{1}{4}$, $\frac{1}{144}a^{7}+\frac{7}{72}a^{5}-\frac{47}{144}a^{3}-\frac{1}{24}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | $C_{4}$, which has order $4$ |
| |
Narrow class group: | $C_{4}$, which has order $4$ |
| |
Relative class number: | $4$ |
Unit group
Rank: | $3$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{5}{144}a^{7}+\frac{11}{72}a^{5}+\frac{5}{144}a^{3}-\frac{5}{24}a$, $\frac{1}{72}a^{7}+\frac{7}{36}a^{5}+\frac{25}{72}a^{3}-\frac{13}{12}a+1$, $\frac{1}{72}a^{7}-\frac{1}{24}a^{6}+\frac{7}{36}a^{5}-\frac{1}{4}a^{4}+\frac{25}{72}a^{3}+\frac{7}{24}a^{2}-\frac{13}{12}a+\frac{5}{4}$
|
| |
Regulator: | \( 21.2871886415 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 21.2871886415 \cdot 4}{2\cdot\sqrt{3317760000}}\cr\approx \mathstrut & 1.15198094235 \end{aligned}\]
Galois group
An abelian group of order 8 |
The 8 conjugacy class representatives for $C_2^3$ |
Character table for $C_2^3$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.2.0.1}{2} }^{4}$ | ${\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.1.0.1}{1} }^{8}$ | ${\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.1.0.1}{1} }^{8}$ | ${\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.4.8b1.6 | $x^{4} + 4 x^{3} + 2 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $$[2, 3]$$ |
2.1.4.8b1.6 | $x^{4} + 4 x^{3} + 2 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $$[2, 3]$$ | |
\(3\)
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
\(5\)
| 5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |