Normalized defining polynomial
\( x^{8} - 1576x^{6} + 931416x^{4} - 244651936x^{2} + 27110492658 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(3234407759571058688\)
\(\medspace = 2^{31}\cdot 197^{4}\)
|
| |
| Root discriminant: | \(205.93\) |
| |
| Galois root discriminant: | $2^{67/16}197^{1/2}\approx 255.73856263801852$ | ||
| Ramified primes: |
\(2\), \(197\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{2}) \) | ||
| $\Aut(K/\Q)$: | $C_4$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-2}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{197}a^{2}$, $\frac{1}{197}a^{3}$, $\frac{1}{38809}a^{4}$, $\frac{1}{38809}a^{5}$, $\frac{1}{7645373}a^{6}$, $\frac{1}{22936119}a^{7}+\frac{1}{116427}a^{5}+\frac{1}{3}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{74}$, which has order $74$ (assuming GRH) |
| |
| Narrow class group: | $C_{74}$, which has order $74$ (assuming GRH) |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{7645373}a^{6}-\frac{7}{38809}a^{4}+\frac{16}{197}a^{2}-11$, $\frac{318609199091}{22936119}a^{7}+\frac{3143435716354}{7645373}a^{6}-\frac{1203765815713}{116427}a^{5}-\frac{13020205085873}{38809}a^{4}+\frac{577231568459}{197}a^{3}+\frac{19736460664899}{197}a^{2}-\frac{953877633382}{3}a-11756393038319$, $\frac{743669227042}{22936119}a^{7}-\frac{3143435716354}{7645373}a^{6}-\frac{5484786544751}{116427}a^{5}+\frac{24701023510375}{38809}a^{4}+\frac{4561165863233}{197}a^{3}-\frac{66459734362907}{197}a^{2}-\frac{11054866222214}{3}a+60046054093965$
|
| |
| Regulator: | \( 20326.6748615 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 20326.6748615 \cdot 74}{2\cdot\sqrt{3234407759571058688}}\cr\approx \mathstrut & 0.651763676026 \end{aligned}\] (assuming GRH)
Galois group
$C_4\wr C_2$ (as 8T17):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \), 4.0.2048.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 sibling: | data not computed |
| Degree 16 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ | ${\href{/padicField/5.8.0.1}{8} }$ | ${\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }$ | ${\href{/padicField/17.4.0.1}{4} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }$ | ${\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.8.0.1}{8} }$ | ${\href{/padicField/41.4.0.1}{4} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.8.31a1.24 | $x^{8} + 16 x^{7} + 8 x^{6} + 2$ | $8$ | $1$ | $31$ | $C_4\wr C_2$ | $$[2, 3, \frac{7}{2}, 4, 5]$$ |
|
\(197\)
| 197.4.2.4a1.1 | $x^{8} + 32 x^{6} + 248 x^{5} + 260 x^{4} + 3968 x^{3} + 15440 x^{2} + 693 x + 4$ | $2$ | $4$ | $4$ | $C_8$ | $$[\ ]_{2}^{4}$$ |