Normalized defining polynomial
\( x^{8} - x^{7} - 5x^{6} + 17x^{5} + 6x^{4} - 54x^{3} + 102x^{2} - 78x + 36 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(196288641792\)
\(\medspace = 2^{8}\cdot 3^{3}\cdot 73^{4}\)
|
| |
| Root discriminant: | \(25.80\) |
| |
| Galois root discriminant: | $2^{3/2}3^{3/4}73^{1/2}\approx 55.086777132635675$ | ||
| Ramified primes: |
\(2\), \(3\), \(73\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{3}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | 4.0.63948.1 | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{4}$, $\frac{1}{4}a^{6}-\frac{1}{4}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{96}a^{7}+\frac{1}{48}a^{6}+\frac{1}{96}a^{5}+\frac{5}{24}a^{4}-\frac{5}{16}a^{3}-\frac{1}{2}a^{2}-\frac{7}{16}a-\frac{1}{8}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{8}$, which has order $8$ |
| |
| Narrow class group: | $C_{8}$, which has order $8$ |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a^{2}-a+1$, $\frac{5}{24}a^{7}+\frac{5}{12}a^{6}-\frac{43}{24}a^{5}-\frac{11}{6}a^{4}+\frac{39}{4}a^{3}+3a^{2}-\frac{55}{4}a+\frac{37}{2}$, $\frac{11}{48}a^{7}+\frac{11}{24}a^{6}-\frac{37}{48}a^{5}+\frac{43}{12}a^{4}+\frac{145}{8}a^{3}+6a^{2}-\frac{61}{8}a+\frac{97}{4}$
|
| |
| Regulator: | \( 702.449726685 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 702.449726685 \cdot 8}{2\cdot\sqrt{196288641792}}\cr\approx \mathstrut & 9.88432752463 \end{aligned}\]
Galois group
| A solvable group of order 64 |
| The 16 conjugacy class representatives for $(C_4^2 : C_2):C_2$ |
| Character table for $(C_4^2 : C_2):C_2$ |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.0.63948.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }$ | ${\href{/padicField/7.8.0.1}{8} }$ | ${\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }$ | ${\href{/padicField/19.2.0.1}{2} }^{3}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }$ | ${\href{/padicField/31.8.0.1}{8} }$ | ${\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }$ | ${\href{/padicField/47.4.0.1}{4} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }$ | ${\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 2.1.2.2a1.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ | |
| 2.1.4.6a1.2 | $x^{4} + 2 x^{3} + 6$ | $4$ | $1$ | $6$ | $D_{4}$ | $$[2, 2]^{2}$$ | |
|
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 3.1.4.3a1.2 | $x^{4} + 6$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ | |
|
\(73\)
| 73.4.2.4a1.2 | $x^{8} + 32 x^{6} + 112 x^{5} + 266 x^{4} + 1792 x^{3} + 3296 x^{2} + 560 x + 98$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |