Normalized defining polynomial
\( x^{7} - 2x^{6} - 19x^{5} - 2x^{4} + 100x^{3} - 506x^{2} - 663x - 1114 \)
Invariants
| Degree: | $7$ |
| |
| Signature: | $[1, 3]$ |
| |
| Discriminant: |
\(-9997195556047\)
\(\medspace = -\,7^{5}\cdot 29^{6}\)
|
| |
| Root discriminant: | \(71.97\) |
| |
| Galois root discriminant: | $7^{5/6}29^{6/7}\approx 90.72612557219027$ | ||
| Ramified primes: |
\(7\), \(29\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-7}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{26}a^{5}-\frac{1}{13}a^{4}-\frac{3}{26}a^{3}+\frac{5}{26}a^{2}-\frac{1}{2}a-\frac{5}{13}$, $\frac{1}{219518}a^{6}+\frac{1093}{109759}a^{5}-\frac{46447}{219518}a^{4}-\frac{98963}{219518}a^{3}+\frac{23563}{219518}a^{2}-\frac{15696}{109759}a-\frac{43492}{109759}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{7}$, which has order $7$ |
| |
| Narrow class group: | $C_{7}$, which has order $7$ |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{17994}{109759}a^{6}+\frac{8605}{16886}a^{5}+\frac{307139}{109759}a^{4}-\frac{781673}{219518}a^{3}-\frac{3626143}{219518}a^{2}+\frac{23474335}{219518}a+\frac{1360750}{109759}$, $\frac{579}{109759}a^{6}-\frac{9955}{219518}a^{5}+\frac{1156}{8443}a^{4}-\frac{69859}{219518}a^{3}+\frac{91051}{219518}a^{2}-\frac{241225}{219518}a+\frac{209834}{109759}$, $\frac{21061}{219518}a^{6}+\frac{4055}{109759}a^{5}-\frac{402665}{219518}a^{4}-\frac{2334145}{219518}a^{3}+\frac{544071}{16886}a^{2}-\frac{3272118}{109759}a-\frac{2562429}{8443}$
|
| |
| Regulator: | \( 2702.8862260921364 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{3}\cdot 2702.8862260921364 \cdot 7}{2\cdot\sqrt{9997195556047}}\cr\approx \mathstrut & 1.48431582081025 \end{aligned}\]
Galois group
| A solvable group of order 42 |
| The 7 conjugacy class representatives for $F_7$ |
| Character table for $F_7$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | data not computed |
| Degree 14 sibling: | data not computed |
| Degree 21 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.3.0.1}{3} }^{2}{,}\,{\href{/padicField/2.1.0.1}{1} }$ | ${\href{/padicField/3.6.0.1}{6} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ | R | ${\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.2.0.1}{2} }^{3}{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }$ | R | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.7.0.1}{7} }$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.3.0.1}{3} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(7\)
| $\Q_{7}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 7.1.6.5a1.1 | $x^{6} + 7$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ | |
|
\(29\)
| 29.1.7.6a1.3 | $x^{7} + 87$ | $7$ | $1$ | $6$ | $C_7$ | $$[\ ]_{7}$$ |