Normalized defining polynomial
\( x^{7} - 28x^{4} + 49x^{3} - 56x^{2} + 63x + 37 \)
Invariants
| Degree: | $7$ |
| |
| Signature: | $[1, 3]$ |
| |
| Discriminant: |
\(-86986729375\)
\(\medspace = -\,5^{4}\cdot 7^{7}\cdot 13^{2}\)
|
| |
| Root discriminant: | \(36.54\) |
| |
| Galois root discriminant: | $5^{2/3}7^{47/42}13^{1/2}\approx 93.03719935120803$ | ||
| Ramified primes: |
\(5\), \(7\), \(13\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-7}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5}a^{5}+\frac{2}{5}a^{4}+\frac{1}{5}a^{3}-\frac{2}{5}a^{2}+\frac{2}{5}a-\frac{1}{5}$, $\frac{1}{1235}a^{6}-\frac{109}{1235}a^{5}+\frac{519}{1235}a^{4}-\frac{283}{1235}a^{3}-\frac{226}{1235}a^{2}+\frac{372}{1235}a-\frac{224}{1235}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{263}{247}a^{6}-\frac{1063}{1235}a^{5}+\frac{24}{1235}a^{4}-\frac{35978}{1235}a^{3}+\frac{95046}{1235}a^{2}-\frac{127826}{1235}a+\frac{117683}{1235}$, $\frac{2692}{1235}a^{6}+\frac{51}{247}a^{5}-\frac{5071}{1235}a^{4}-\frac{77893}{1235}a^{3}+\frac{131867}{1235}a^{2}+\frac{2586}{247}a-\frac{19841}{1235}$, $\frac{32226}{1235}a^{6}+\frac{57751}{1235}a^{5}+\frac{98489}{1235}a^{4}-\frac{745423}{1235}a^{3}+\frac{188674}{1235}a^{2}-\frac{1467253}{1235}a-\frac{652129}{1235}$
|
| |
| Regulator: | \( 2205.88942796 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{3}\cdot 2205.88942796 \cdot 1}{2\cdot\sqrt{86986729375}}\cr\approx \mathstrut & 1.85522609076 \end{aligned}\]
Galois group
| A non-solvable group of order 5040 |
| The 15 conjugacy class representatives for $S_7$ |
| Character table for $S_7$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 14 sibling: | deg 14 |
| Degree 21 sibling: | deg 21 |
| Degree 30 sibling: | deg 30 |
| Degree 35 sibling: | deg 35 |
| Degree 42 siblings: | deg 42, deg 42, some data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.4.0.1}{4} }{,}\,{\href{/padicField/2.2.0.1}{2} }{,}\,{\href{/padicField/2.1.0.1}{1} }$ | ${\href{/padicField/3.6.0.1}{6} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ | R | R | ${\href{/padicField/11.5.0.1}{5} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.5.0.1}{5} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.3.0.1}{3} }$ | ${\href{/padicField/37.5.0.1}{5} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.5.0.1}{5} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.5.0.1}{5} }{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(5\)
| $\Q_{5}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 5.2.3.4a1.1 | $x^{6} + 12 x^{5} + 54 x^{4} + 112 x^{3} + 108 x^{2} + 53 x + 8$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $$[\ ]_{3}^{6}$$ | |
|
\(7\)
| 7.1.7.7a1.2 | $x^{7} + 14 x + 7$ | $7$ | $1$ | $7$ | $F_7$ | $$[\frac{7}{6}]_{6}$$ |
|
\(13\)
| $\Q_{13}$ | $x + 11$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 13.1.2.1a1.1 | $x^{2} + 13$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 13.1.2.1a1.1 | $x^{2} + 13$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |