Normalized defining polynomial
    \( x^{7} - 14x^{3} + 28x - 16 \)
    
    
    
        
    
    
        
    
 
    
Invariants
| Degree: | $7$ |  | |
| Signature: | $[1, 3]$ |  | |
| Discriminant: | \(-37105553408\)
    
    \(\medspace = -\,2^{12}\cdot 7^{7}\cdot 11\) |  | |
| Root discriminant: | \(32.35\) |  | |
| Galois root discriminant: | $2^{11/4}7^{47/42}11^{1/2}\approx 196.89458856827093$ | ||
| Ramified primes: | \(2\), \(7\), \(11\) |  | |
| Discriminant root field: | \(\Q(\sqrt{-77}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |  | |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
            
    $1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}$, $\frac{1}{2}a^{5}$, $\frac{1}{4}a^{6}-\frac{1}{2}a^{2}$
    
    
    
        
    
    
        
    
            
    
| Monogenic: | No | |
| Index: | $2$ | |
| Inessential primes: | $2$ | 
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |  | |
| Narrow class group: | Trivial group, which has order $1$ |  | 
Unit group
| Rank: | $3$ |  | |
| Torsion generator: | \( -1 \)
    
     (order $2$) |  | |
| Fundamental units: | $a^{6}+a^{5}+a^{4}+a^{3}-13a^{2}-13a+15$, $\frac{47}{2}a^{6}+77a^{5}+112a^{4}+11a^{3}-234a^{2}-150a+205$, $142a^{6}-\frac{21}{2}a^{5}-1009a^{4}-101a^{3}+2463a^{2}+250a-1929$ |  | |
| Regulator: | \( 1601.02536619 \) |  | 
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{3}\cdot 1601.02536619 \cdot 1}{2\cdot\sqrt{37105553408}}\cr\approx \mathstrut & 2.06166624905 \end{aligned}\]
Galois group
| A non-solvable group of order 5040 | 
| The 15 conjugacy class representatives for $S_7$ | 
| Character table for $S_7$ | 
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. | 
Sibling fields
| Degree 14 sibling: | deg 14 | 
| Degree 21 sibling: | deg 21 | 
| Degree 30 sibling: | deg 30 | 
| Degree 35 sibling: | deg 35 | 
| Degree 42 siblings: | deg 42, deg 42, some data not computed | 
| Minimal sibling: | This field is its own minimal sibling | 
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.7.0.1}{7} }$ | ${\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.3.0.1}{3} }$ | R | R | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.7.0.1}{7} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.7.0.1}{7} }$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }$ | 
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content | 
|---|---|---|---|---|---|---|---|
| \(2\) | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | 
| 2.1.2.3a1.4 | $x^{2} + 4 x + 10$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ | |
| 2.1.4.9a1.7 | $x^{4} + 2 x^{2} + 8 x + 6$ | $4$ | $1$ | $9$ | $D_{4}$ | $$[2, 3, \frac{7}{2}]$$ | |
| \(7\) | 7.1.7.7a1.2 | $x^{7} + 14 x + 7$ | $7$ | $1$ | $7$ | $F_7$ | $$[\frac{7}{6}]_{6}$$ | 
| \(11\) | 11.1.2.1a1.2 | $x^{2} + 22$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | 
| 11.5.1.0a1.1 | $x^{5} + 10 x^{2} + 9$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | 
