Normalized defining polynomial
\( x^{7} - 3x^{6} + 39x^{5} - 145x^{4} + 519x^{3} - 1989x^{2} + 3201x - 1431 \)
Invariants
| Degree: | $7$ |
| |
| Signature: | $[1, 3]$ |
| |
| Discriminant: |
\(-1329725180808576\)
\(\medspace = -\,2^{7}\cdot 3^{7}\cdot 41^{6}\)
|
| |
| Root discriminant: | \(144.72\) |
| |
| Galois root discriminant: | $2^{13/6}3^{31/18}41^{6/7}\approx 718.3343720117198$ | ||
| Ramified primes: |
\(2\), \(3\), \(41\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-6}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{4}-\frac{1}{4}$, $\frac{1}{8}a^{5}-\frac{1}{8}a^{4}-\frac{1}{8}a+\frac{1}{8}$, $\frac{1}{624}a^{6}-\frac{3}{104}a^{5}-\frac{1}{208}a^{4}-\frac{25}{156}a^{3}+\frac{49}{208}a^{2}+\frac{29}{104}a+\frac{93}{208}$
| Monogenic: | No | |
| Index: | $2$ | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{11\cdots 11}{208}a^{6}-\frac{61\cdots 49}{104}a^{5}+\frac{71\cdots 43}{208}a^{4}-\frac{83\cdots 37}{52}a^{3}+\frac{89\cdots 77}{208}a^{2}-\frac{54\cdots 89}{104}a+\frac{42\cdots 05}{208}$, $\frac{11\cdots 41}{208}a^{6}-\frac{11\cdots 81}{104}a^{5}+\frac{12\cdots 53}{208}a^{4}-\frac{18\cdots 35}{52}a^{3}+\frac{26\cdots 23}{208}a^{2}-\frac{18\cdots 13}{104}a+\frac{15\cdots 19}{208}$, $\frac{28\cdots 31}{24}a^{6}-\frac{40\cdots 91}{4}a^{5}+\frac{35\cdots 15}{8}a^{4}-\frac{23\cdots 44}{3}a^{3}+\frac{35\cdots 91}{8}a^{2}-\frac{55\cdots 57}{4}a+\frac{63\cdots 29}{8}$
|
| |
| Regulator: | \( 1481588.34236 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{3}\cdot 1481588.34236 \cdot 1}{2\cdot\sqrt{1329725180808576}}\cr\approx \mathstrut & 10.0782751445 \end{aligned}\]
Galois group
| A non-solvable group of order 5040 |
| The 15 conjugacy class representatives for $S_7$ |
| Character table for $S_7$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 14 sibling: | deg 14 |
| Degree 21 sibling: | deg 21 |
| Degree 30 sibling: | deg 30 |
| Degree 35 sibling: | deg 35 |
| Degree 42 siblings: | deg 42, deg 42, deg 42, some data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.7.0.1}{7} }$ | ${\href{/padicField/7.5.0.1}{5} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{3}$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{3}$ | ${\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.3.0.1}{3} }$ | ${\href{/padicField/29.7.0.1}{7} }$ | ${\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.5.0.1}{5} }{,}\,{\href{/padicField/37.2.0.1}{2} }$ | R | ${\href{/padicField/43.2.0.1}{2} }^{3}{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{3}$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.7.0.1}{7} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.2a1.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ |
| 2.1.2.3a1.1 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ | |
| 2.1.3.2a1.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
|
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 3.1.3.4a1.1 | $x^{3} + 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $S_3$ | $$[2]^{2}$$ | |
| 3.1.3.3a1.1 | $x^{3} + 3 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $$[\frac{3}{2}]_{2}$$ | |
|
\(41\)
| 41.1.7.6a1.1 | $x^{7} + 41$ | $7$ | $1$ | $6$ | $D_{7}$ | $$[\ ]_{7}^{2}$$ |