Normalized defining polynomial
\( x^{6} - x^{5} - 6x^{4} - 2x^{3} - 24x^{2} - 16x + 64 \)
Invariants
| Degree: | $6$ |
| |
| Signature: | $[2, 2]$ |
| |
| Discriminant: |
\(607523904\)
\(\medspace = 2^{6}\cdot 3^{2}\cdot 13^{2}\cdot 79^{2}\)
|
| |
| Root discriminant: | \(29.10\) |
| |
| Galois root discriminant: | $2^{3/2}3^{1/2}13^{1/2}79^{1/2}\approx 156.9968152543229$ | ||
| Ramified primes: |
\(2\), \(3\), \(13\), \(79\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{48}a^{5}-\frac{5}{48}a^{4}-\frac{5}{24}a^{3}+\frac{7}{24}a^{2}+\frac{1}{3}a+\frac{1}{3}$
| Monogenic: | No | |
| Index: | $4$ | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{3}{8}a^{5}-\frac{5}{8}a^{4}-2a^{3}+\frac{7}{4}a^{2}-\frac{31}{2}a+19$, $\frac{95}{12}a^{5}-\frac{149}{6}a^{4}+\frac{37}{12}a^{3}-\frac{47}{3}a^{2}-\frac{983}{6}a+\frac{737}{3}$, $\frac{1235}{24}a^{5}+\frac{203}{24}a^{4}-\frac{901}{3}a^{3}-\frac{5401}{12}a^{2}-\frac{10537}{6}a-\frac{8579}{3}$
|
| |
| Regulator: | \( 2211.62076006 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{2}\cdot 2211.62076006 \cdot 1}{2\cdot\sqrt{607523904}}\cr\approx \mathstrut & 7.08465497794 \end{aligned}\]
Galois group
| A solvable group of order 24 |
| The 5 conjugacy class representatives for $S_4$ |
| Character table for $S_4$ |
Intermediate fields
| 3.3.24648.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | data not computed |
| Twin sextic algebra: | \(\Q(\sqrt{6162}) \) $\times$ 4.0.24648.1 |
| Degree 4 sibling: | 4.0.24648.1 |
| Degree 6 sibling: | data not computed |
| Degree 8 sibling: | data not computed |
| Degree 12 siblings: | data not computed |
| Minimal sibling: | 4.0.24648.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.2.0.1}{2} }$ | ${\href{/padicField/7.3.0.1}{3} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ | R | ${\href{/padicField/17.3.0.1}{3} }^{2}$ | ${\href{/padicField/19.3.0.1}{3} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.2.0.1}{2} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }$ | ${\href{/padicField/43.3.0.1}{3} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 2.1.2.3a1.3 | $x^{2} + 4 x + 2$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ | |
| 2.1.2.3a1.3 | $x^{2} + 4 x + 2$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ | |
|
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(13\)
| $\Q_{13}$ | $x + 11$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{13}$ | $x + 11$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 13.2.2.2a1.2 | $x^{4} + 24 x^{3} + 148 x^{2} + 48 x + 17$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(79\)
| $\Q_{79}$ | $x + 76$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{79}$ | $x + 76$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 79.2.2.2a1.2 | $x^{4} + 156 x^{3} + 6090 x^{2} + 468 x + 88$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |