Normalized defining polynomial
\( x^{6} - 2x^{5} - 2951x^{4} + 47570x^{3} + 2448417x^{2} - 79692364x + 649889637 \)
Invariants
| Degree: | $6$ |
| |
| Signature: | $[0, 3]$ |
| |
| Discriminant: |
\(-9759407007223876480827824\)
\(\medspace = -\,2^{4}\cdot 43^{5}\cdot 71^{3}\cdot 103^{5}\)
|
| |
| Root discriminant: | \($14\,618$.54\) |
| |
| Galois root discriminant: | $2^{2/3}43^{5/6}71^{1/2}103^{5/6}\approx 14618.536789485457$ | ||
| Ramified primes: |
\(2\), \(43\), \(71\), \(103\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-314459}) \) | ||
| $\Aut(K/\Q)$: | $C_3$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-314459}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{181170}a^{5}-\frac{1631}{10065}a^{4}+\frac{437}{16470}a^{3}-\frac{25877}{181170}a^{2}+\frac{92}{8235}a-\frac{20311}{60390}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}\times C_{2}\times C_{6}\times C_{17872512}$, which has order $428940288$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{6}\times C_{17872512}$, which has order $428940288$ (assuming GRH) |
|
Unit group
| Rank: | $2$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{37}{181170}a^{5}+\frac{43}{10065}a^{4}-\frac{4268}{8235}a^{3}-\frac{252262}{90585}a^{2}+\frac{7492423}{16470}a-\frac{156861341}{30195}$, $a+22$
|
| |
| Regulator: | \( 124.8216089887036 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 124.8216089887036 \cdot 428940288}{2\cdot\sqrt{9759407007223876480827824}}\cr\approx \mathstrut & 2.12561452853188 \end{aligned}\] (assuming GRH)
Galois group
$C_3\times S_3$ (as 6T5):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3\times C_3$ |
| Character table for $S_3\times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-314459}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | data not computed |
| Twin sextic algebra: | data not computed |
| Degree 9 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.3.0.1}{3} }{,}\,{\href{/padicField/3.1.0.1}{1} }^{3}$ | ${\href{/padicField/5.3.0.1}{3} }{,}\,{\href{/padicField/5.1.0.1}{1} }^{3}$ | ${\href{/padicField/7.3.0.1}{3} }^{2}$ | ${\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{3}$ | ${\href{/padicField/13.6.0.1}{6} }$ | ${\href{/padicField/17.2.0.1}{2} }^{3}$ | ${\href{/padicField/19.2.0.1}{2} }^{3}$ | ${\href{/padicField/23.6.0.1}{6} }$ | ${\href{/padicField/29.6.0.1}{6} }$ | ${\href{/padicField/31.3.0.1}{3} }^{2}$ | ${\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{3}$ | ${\href{/padicField/41.6.0.1}{6} }$ | R | ${\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{3}$ | ${\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{3}$ | ${\href{/padicField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.3.4a1.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 7 x^{3} + 6 x^{2} + 5 x + 1$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $$[\ ]_{3}^{6}$$ |
|
\(43\)
| 43.1.6.5a1.5 | $x^{6} + 1204$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ |
|
\(71\)
| 71.1.2.1a1.1 | $x^{2} + 71$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 71.1.2.1a1.1 | $x^{2} + 71$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 71.1.2.1a1.1 | $x^{2} + 71$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
|
\(103\)
| 103.1.6.5a1.5 | $x^{6} + 2575$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ |