Normalized defining polynomial
\( x^{6} + 11028x^{4} + 30404196x^{2} + 27018600 \)
Invariants
| Degree: | $6$ |
| |
| Signature: | $[0, 3]$ |
| |
| Discriminant: |
\(-6606003666247603259904\)
\(\medspace = -\,2^{9}\cdot 3^{9}\cdot 919^{5}\)
|
| |
| Root discriminant: | \(4331.68\) |
| |
| Galois root discriminant: | $2^{3/2}3^{3/2}919^{5/6}\approx 4331.681022112491$ | ||
| Ramified primes: |
\(2\), \(3\), \(919\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-5514}) \) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_6$ |
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(66168=2^{3}\cdot 3^{2}\cdot 919\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{66168}(1,·)$, $\chi_{66168}(33083,·)$, $\chi_{66168}(38545,·)$, $\chi_{66168}(46921,·)$, $\chi_{66168}(52331,·)$, $\chi_{66168}(60707,·)$$\rbrace$ | ||
| This is a CM field. | |||
| Reflex fields: | unavailable$^{4}$ | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2}a^{2}$, $\frac{1}{70}a^{3}-\frac{8}{35}a$, $\frac{1}{257180}a^{4}+\frac{3216}{64295}a^{2}+\frac{105}{1837}$, $\frac{1}{257180}a^{5}-\frac{458}{64295}a^{3}-\frac{1836}{64295}a$
| Monogenic: | No | |
| Index: | $5$ | |
| Inessential primes: | $5$ |
Class group and class number
| Ideal class group: | $C_{3}\times C_{6}\times C_{1180530}$, which has order $21249540$ (assuming GRH) |
| |
| Narrow class group: | $C_{3}\times C_{6}\times C_{1180530}$, which has order $21249540$ (assuming GRH) |
| |
| Relative class number: | $181620$ (assuming GRH) |
Unit group
| Rank: | $2$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{257180}a^{4}-\frac{3216}{64295}a^{2}-\frac{288514}{1837}$, $\frac{53}{257180}a^{4}-\frac{148011}{128590}a^{2}-\frac{3728}{1837}$
|
| |
| Regulator: | \( 102.39432384791388 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 102.39432384791388 \cdot 21249540}{2\cdot\sqrt{6606003666247603259904}}\cr\approx \mathstrut & 3.32021050882378 \end{aligned}\] (assuming GRH)
Galois group
| A cyclic group of order 6 |
| The 6 conjugacy class representatives for $C_6$ |
| Character table for $C_6$ |
Intermediate fields
| \(\Q(\sqrt{-5514}) \), 3.3.68409441.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.1.0.1}{1} }^{6}$ | ${\href{/padicField/7.1.0.1}{1} }^{6}$ | ${\href{/padicField/11.2.0.1}{2} }^{3}$ | ${\href{/padicField/13.6.0.1}{6} }$ | ${\href{/padicField/17.2.0.1}{2} }^{3}$ | ${\href{/padicField/19.6.0.1}{6} }$ | ${\href{/padicField/23.3.0.1}{3} }^{2}$ | ${\href{/padicField/29.3.0.1}{3} }^{2}$ | ${\href{/padicField/31.1.0.1}{1} }^{6}$ | ${\href{/padicField/37.3.0.1}{3} }^{2}$ | ${\href{/padicField/41.1.0.1}{1} }^{6}$ | ${\href{/padicField/43.6.0.1}{6} }$ | ${\href{/padicField/47.3.0.1}{3} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{3}$ | ${\href{/padicField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.3.2.9a1.2 | $x^{6} + 2 x^{4} + 2 x^{3} + x^{2} + 2 x + 11$ | $2$ | $3$ | $9$ | $C_6$ | $$[3]^{3}$$ |
|
\(3\)
| 3.1.6.9a1.9 | $x^{6} + 3 x^{4} + 24$ | $6$ | $1$ | $9$ | $C_6$ | $$[2]_{2}$$ |
|
\(919\)
| Deg $6$ | $6$ | $1$ | $5$ |