Normalized defining polynomial
\( x^{6} - 2x^{5} - 891x^{4} + 8430x^{3} + 246277x^{2} - 4679524x + 22110817 \)
Invariants
| Degree: | $6$ |
| |
| Signature: | $[0, 3]$ |
| |
| Discriminant: |
\(-4746510411904826652464\)
\(\medspace = -\,2^{4}\cdot 13^{5}\cdot 41^{3}\cdot 103^{5}\)
|
| |
| Root discriminant: | \(4099.48\) |
| |
| Galois root discriminant: | $2^{2/3}13^{5/6}41^{1/2}103^{5/6}\approx 4099.482841299328$ | ||
| Ramified primes: |
\(2\), \(13\), \(41\), \(103\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-54899}) \) | ||
| $\Aut(K/\Q)$: | $C_3$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-54899}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{35130}a^{5}-\frac{2789}{17565}a^{4}-\frac{2789}{17565}a^{3}-\frac{6911}{17565}a^{2}-\frac{1127}{11710}a+\frac{7771}{17565}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}\times C_{6}\times C_{78}\times C_{16068}$, which has order $15039648$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{6}\times C_{78}\times C_{16068}$, which has order $15039648$ (assuming GRH) |
|
Unit group
| Rank: | $2$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{899}{35130}a^{5}+\frac{4484}{17565}a^{4}-\frac{346816}{17565}a^{3}-\frac{363844}{17565}a^{2}+\frac{70909647}{11710}a-\frac{829564561}{17565}$, $a+12$
|
| |
| Regulator: | \( 92.92970024485224 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 92.92970024485224 \cdot 15039648}{2\cdot\sqrt{4746510411904826652464}}\cr\approx \mathstrut & 2.51602295192451 \end{aligned}\] (assuming GRH)
Galois group
$C_3\times S_3$ (as 6T5):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3\times C_3$ |
| Character table for $S_3\times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-54899}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | data not computed |
| Twin sextic algebra: | data not computed |
| Degree 9 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.3.0.1}{3} }{,}\,{\href{/padicField/3.1.0.1}{1} }^{3}$ | ${\href{/padicField/5.3.0.1}{3} }{,}\,{\href{/padicField/5.1.0.1}{1} }^{3}$ | ${\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{3}$ | ${\href{/padicField/11.2.0.1}{2} }^{3}$ | R | ${\href{/padicField/17.6.0.1}{6} }$ | ${\href{/padicField/19.3.0.1}{3} }^{2}$ | ${\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{3}$ | ${\href{/padicField/29.6.0.1}{6} }$ | ${\href{/padicField/31.3.0.1}{3} }^{2}$ | ${\href{/padicField/37.3.0.1}{3} }^{2}$ | R | ${\href{/padicField/43.2.0.1}{2} }^{3}$ | ${\href{/padicField/47.6.0.1}{6} }$ | ${\href{/padicField/53.3.0.1}{3} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.3.4a1.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 7 x^{3} + 6 x^{2} + 5 x + 1$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $$[\ ]_{3}^{6}$$ |
|
\(13\)
| 13.1.6.5a1.6 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ |
|
\(41\)
| 41.3.2.3a1.1 | $x^{6} + 2 x^{4} + 70 x^{3} + x^{2} + 111 x + 1225$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ |
|
\(103\)
| 103.1.6.5a1.1 | $x^{6} + 103$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ |