Normalized defining polynomial
\( x^{6} + 369x^{4} + 18792x^{2} - 79785x + 158787 \)
Invariants
| Degree: | $6$ |
| |
| Signature: | $[0, 3]$ |
| |
| Discriminant: |
\(-2058703036216875\)
\(\medspace = -\,3^{7}\cdot 5^{4}\cdot 197^{4}\)
|
| |
| Root discriminant: | \(356.67\) |
| |
| Galois root discriminant: | $3^{7/6}5^{2/3}197^{2/3}\approx 356.6692080825396$ | ||
| Ramified primes: |
\(3\), \(5\), \(197\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3}a^{2}$, $\frac{1}{9}a^{3}+\frac{1}{3}a$, $\frac{1}{351}a^{4}-\frac{4}{117}a^{3}-\frac{10}{117}a^{2}-\frac{16}{39}a-\frac{5}{39}$, $\frac{1}{214461}a^{5}-\frac{71}{214461}a^{4}-\frac{388}{7943}a^{3}-\frac{6244}{71487}a^{2}+\frac{4241}{23829}a+\frac{7744}{23829}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{12}$, which has order $12$ (assuming GRH) |
| |
| Narrow class group: | $C_{12}$, which has order $12$ (assuming GRH) |
|
Unit group
| Rank: | $2$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{514494406}{214461}a^{5}-\frac{3583838630}{214461}a^{4}+\frac{57122724553}{71487}a^{3}-\frac{324522908854}{71487}a^{2}+\frac{88766998668}{7943}a-\frac{247424728916}{23829}$, $\frac{29\cdots 01}{23829}a^{5}+\frac{69\cdots 36}{23829}a^{4}+\frac{17\cdots 58}{7943}a^{3}+\frac{78\cdots 97}{7943}a^{2}-\frac{33\cdots 58}{7943}a+\frac{62\cdots 99}{7943}$
|
| |
| Regulator: | \( 40692.3478334 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 40692.3478334 \cdot 12}{2\cdot\sqrt{2058703036216875}}\cr\approx \mathstrut & 1.33477096536 \end{aligned}\] (assuming GRH)
Galois group
| A non-solvable group of order 720 |
| The 11 conjugacy class representatives for $S_6$ |
| Character table for $S_6$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling algebras
| Twin sextic algebra: | 6.4.26196075.2 |
| Degree 6 sibling: | 6.4.26196075.2 |
| Degree 10 sibling: | deg 10 |
| Degree 12 siblings: | deg 12, deg 12 |
| Degree 15 siblings: | deg 15, deg 15 |
| Degree 20 siblings: | deg 20, deg 20, deg 20 |
| Degree 30 siblings: | deg 30, deg 30, deg 30, deg 30, deg 30, deg 30 |
| Degree 36 sibling: | deg 36 |
| Degree 40 siblings: | deg 40, deg 40, some data not computed |
| Degree 45 sibling: | data not computed |
| Minimal sibling: | 6.4.26196075.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.3.0.1}{3} }{,}\,{\href{/padicField/2.2.0.1}{2} }{,}\,{\href{/padicField/2.1.0.1}{1} }$ | R | R | ${\href{/padicField/7.5.0.1}{5} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.2.0.1}{2} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.6.0.1}{6} }$ | ${\href{/padicField/19.5.0.1}{5} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.6.0.1}{6} }$ | ${\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{3}$ | ${\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{3}$ | ${\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }$ | ${\href{/padicField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.1.6.7a1.2 | $x^{6} + 3 x^{3} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3\times C_3$ | $$[\frac{3}{2}]_{2}^{3}$$ |
|
\(5\)
| 5.2.3.4a1.1 | $x^{6} + 12 x^{5} + 54 x^{4} + 112 x^{3} + 108 x^{2} + 53 x + 8$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $$[\ ]_{3}^{6}$$ |
|
\(197\)
| 197.2.3.4a1.1 | $x^{6} + 576 x^{5} + 110598 x^{4} + 7080192 x^{3} + 221196 x^{2} + 2501 x + 8$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $$[\ ]_{3}^{6}$$ |