Normalized defining polynomial
\( x^{6} - 2x^{5} + 62627x^{4} - 82934x^{3} + 1314242662x^{2} - 911803664x + 9241132914001 \)
Invariants
| Degree: | $6$ |
| |
| Signature: | $[0, 3]$ |
| |
| Discriminant: |
\(-12923756519709369152000\)
\(\medspace = -\,2^{9}\cdot 5^{3}\cdot 7^{3}\cdot 13^{5}\cdot 19^{4}\cdot 23^{3}\)
|
| |
| Root discriminant: | \(4844.30\) |
| |
| Galois root discriminant: | $2^{3/2}5^{1/2}7^{1/2}13^{5/6}19^{2/3}23^{1/2}\approx 4844.304804751016$ | ||
| Ramified primes: |
\(2\), \(5\), \(7\), \(13\), \(19\), \(23\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-20930}) \) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_6$ |
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1590680=2^{3}\cdot 5\cdot 7\cdot 13\cdot 19\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1590680}(1,·)$, $\chi_{1590680}(293019,·)$, $\chi_{1590680}(718059,·)$, $\chi_{1590680}(914481,·)$, $\chi_{1590680}(940241,·)$, $\chi_{1590680}(1110899,·)$$\rbrace$ | ||
| This is a CM field. | |||
| Reflex fields: | unavailable$^{4}$ | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{13}a^{3}-\frac{1}{13}a^{2}-\frac{4}{13}a-\frac{1}{13}$, $\frac{1}{13}a^{4}-\frac{5}{13}a^{2}-\frac{5}{13}a-\frac{1}{13}$, $\frac{1}{45404943657853}a^{5}-\frac{160104860060}{45404943657853}a^{4}+\frac{213473216375}{45404943657853}a^{3}+\frac{21496944472130}{45404943657853}a^{2}+\frac{758830912583}{45404943657853}a+\frac{14176156995696}{45404943657853}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{6}\times C_{106974}$, which has order $10269504$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{6}\times C_{106974}$, which has order $10269504$ (assuming GRH) |
| |
| Relative class number: | $3423168$ (assuming GRH) |
Unit group
| Rank: | $2$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{219568}{45404943657853}a^{5}+\frac{541445185}{45404943657853}a^{4}+\frac{14566226980}{45404943657853}a^{3}+\frac{1736632625880}{3492687973681}a^{2}+\frac{209359995966580}{45404943657853}a+\frac{23\cdots 55}{45404943657853}$, $\frac{180890}{45404943657853}a^{5}+\frac{541509452}{45404943657853}a^{4}+\frac{11873056614}{45404943657853}a^{3}+\frac{22578881670117}{45404943657853}a^{2}+\frac{13071956477866}{3492687973681}a+\frac{23\cdots 39}{45404943657853}$
|
| |
| Regulator: | \( 30.23059520490968 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 30.23059520490968 \cdot 10269504}{2\cdot\sqrt{12923756519709369152000}}\cr\approx \mathstrut & 0.338697032910699 \end{aligned}\] (assuming GRH)
Galois group
| A cyclic group of order 6 |
| The 6 conjugacy class representatives for $C_6$ |
| Character table for $C_6$ |
Intermediate fields
| \(\Q(\sqrt{-20930}) \), 3.3.61009.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.3.0.1}{3} }^{2}$ | R | R | ${\href{/padicField/11.3.0.1}{3} }^{2}$ | R | ${\href{/padicField/17.2.0.1}{2} }^{3}$ | R | R | ${\href{/padicField/29.2.0.1}{2} }^{3}$ | ${\href{/padicField/31.2.0.1}{2} }^{3}$ | ${\href{/padicField/37.3.0.1}{3} }^{2}$ | ${\href{/padicField/41.3.0.1}{3} }^{2}$ | ${\href{/padicField/43.1.0.1}{1} }^{6}$ | ${\href{/padicField/47.3.0.1}{3} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }$ | ${\href{/padicField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.3.2.9a1.1 | $x^{6} + 2 x^{4} + 2 x^{3} + x^{2} + 2 x + 3$ | $2$ | $3$ | $9$ | $C_6$ | $$[3]^{3}$$ |
|
\(5\)
| 5.3.2.3a1.2 | $x^{6} + 6 x^{4} + 6 x^{3} + 9 x^{2} + 18 x + 14$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ |
|
\(7\)
| 7.3.2.3a1.2 | $x^{6} + 12 x^{5} + 36 x^{4} + 8 x^{3} + 48 x^{2} + 23$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ |
|
\(13\)
| 13.1.6.5a1.5 | $x^{6} + 78$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ |
|
\(19\)
| 19.2.3.4a1.1 | $x^{6} + 54 x^{5} + 978 x^{4} + 6048 x^{3} + 1956 x^{2} + 235 x + 8$ | $3$ | $2$ | $4$ | $C_6$ | $$[\ ]_{3}^{2}$$ |
|
\(23\)
| 23.1.2.1a1.1 | $x^{2} + 23$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 23.1.2.1a1.1 | $x^{2} + 23$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 23.1.2.1a1.1 | $x^{2} + 23$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |