Normalized defining polynomial
\( x^{6} - 3x^{5} + 6x^{4} + 94607x^{3} - 141915x^{2} - 141924x + 2238046864 \)
Invariants
| Degree: | $6$ |
| |
| Signature: | $[0, 3]$ |
| |
| Discriminant: |
\(-10953436997874693548187\)
\(\medspace = -\,3^{11}\cdot 13^{4}\cdot 1213^{4}\)
|
| |
| Root discriminant: | \(4712.58\) |
| |
| Galois root discriminant: | $3^{11/6}13^{2/3}1213^{2/3}\approx 4712.57638273069$ | ||
| Ramified primes: |
\(3\), \(13\), \(1213\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $S_3$ |
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-3}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3}a^{3}+\frac{1}{3}$, $\frac{1}{6}a^{4}+\frac{1}{6}a$, $\frac{1}{10070785116}a^{5}+\frac{23651}{10070785116}a^{4}-\frac{559511713}{5035392558}a^{3}-\frac{3356739149}{10070785116}a^{2}-\frac{2238117817}{10070785116}a-\frac{2}{212877}$
| Monogenic: | No | |
| Index: | $4$ | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{3}\times C_{3}\times C_{735}\times C_{2205}$, which has order $14586075$ (assuming GRH) |
| |
| Narrow class group: | $C_{3}\times C_{3}\times C_{735}\times C_{2205}$, which has order $14586075$ (assuming GRH) |
|
Unit group
| Rank: | $2$ |
| |
| Torsion generator: |
\( -\frac{1}{3356928372} a^{5} - \frac{23651}{3356928372} a^{4} + \frac{23651}{1678464186} a^{3} - \frac{189223}{3356928372} a^{2} - \frac{1118810555}{3356928372} a + \frac{47308}{70959} \)
(order $6$)
|
| |
| Fundamental units: |
$\frac{1}{559488062}a^{5}+\frac{23651}{559488062}a^{4}-\frac{23651}{279744031}a^{3}+\frac{189223}{559488062}a^{2}+\frac{4475738927}{559488062}a+\frac{5038085}{23653}$, $\frac{653}{15469716}a^{5}-\frac{25613}{15469716}a^{4}+\frac{25613}{7734858}a^{3}+\frac{30744323}{15469716}a^{2}-\frac{1211622965}{15469716}a-\frac{25613}{327}$
|
| |
| Regulator: | \( 421.8654471094777 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 421.8654471094777 \cdot 14586075}{6\cdot\sqrt{10953436997874693548187}}\cr\approx \mathstrut & 2.43066745244705 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 6 |
| The 3 conjugacy class representatives for $S_3$ |
| Character table for $S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.60424710723.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | \(\Q\) $\times$ \(\Q\) $\times$ \(\Q\) $\times$ 3.1.60424710723.1 |
| Degree 3 sibling: | 3.1.60424710723.1 |
| Minimal sibling: | 3.1.60424710723.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.2.0.1}{2} }^{3}$ | R | ${\href{/padicField/5.2.0.1}{2} }^{3}$ | ${\href{/padicField/7.1.0.1}{1} }^{6}$ | ${\href{/padicField/11.2.0.1}{2} }^{3}$ | R | ${\href{/padicField/17.2.0.1}{2} }^{3}$ | ${\href{/padicField/19.3.0.1}{3} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{3}$ | ${\href{/padicField/29.2.0.1}{2} }^{3}$ | ${\href{/padicField/31.1.0.1}{1} }^{6}$ | ${\href{/padicField/37.3.0.1}{3} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{3}$ | ${\href{/padicField/43.3.0.1}{3} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{3}$ | ${\href{/padicField/53.2.0.1}{2} }^{3}$ | ${\href{/padicField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.1.6.11a1.1 | $x^{6} + 3$ | $6$ | $1$ | $11$ | $S_3$ | $$[\frac{5}{2}]_{2}$$ |
|
\(13\)
| 13.1.3.2a1.1 | $x^{3} + 13$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ |
| 13.1.3.2a1.1 | $x^{3} + 13$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ | |
|
\(1213\)
| Deg $3$ | $3$ | $1$ | $2$ | |||
| Deg $3$ | $3$ | $1$ | $2$ |