Normalized defining polynomial
\( x^{6} - 3x^{5} + 24x^{4} - 43x^{3} + 456x^{2} - 435x + 3007 \)
Invariants
| Degree: | $6$ |
| |
| Signature: | $[0, 3]$ |
| |
| Discriminant: |
\(-108222553539\)
\(\medspace = -\,3^{2}\cdot 29^{3}\cdot 79^{3}\)
|
| |
| Root discriminant: | \(69.03\) |
| |
| Galois root discriminant: | $3^{1/2}29^{1/2}79^{1/2}\approx 82.90355842785037$ | ||
| Ramified primes: |
\(3\), \(29\), \(79\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-2291}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{6}a^{2}-\frac{1}{6}a+\frac{1}{6}$, $\frac{1}{6}a^{3}+\frac{1}{6}$, $\frac{1}{36}a^{4}-\frac{1}{18}a^{3}-\frac{1}{12}a^{2}+\frac{1}{9}a-\frac{5}{36}$, $\frac{1}{108}a^{5}-\frac{1}{108}a^{4}-\frac{5}{108}a^{3}+\frac{1}{108}a^{2}-\frac{1}{108}a-\frac{5}{108}$
| Monogenic: | No | |
| Index: | $4$ | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{2}\times C_{4}$, which has order $8$ |
| |
| Narrow class group: | $C_{2}\times C_{4}$, which has order $8$ |
|
Unit group
| Rank: | $2$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{229}{36}a^{5}+\frac{41}{6}a^{4}+\frac{3521}{36}a^{3}-\frac{1085}{9}a^{2}+\frac{2691}{4}a-\frac{15733}{9}$, $\frac{47}{36}a^{4}-\frac{47}{18}a^{3}+\frac{1387}{12}a^{2}-\frac{2057}{18}a+\frac{33911}{36}$
|
| |
| Regulator: | \( 578.56057074 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 578.56057074 \cdot 8}{2\cdot\sqrt{108222553539}}\cr\approx \mathstrut & 1.7449763320 \end{aligned}\]
Galois group
| A solvable group of order 24 |
| The 5 conjugacy class representatives for $S_4$ |
| Character table for $S_4$ |
Intermediate fields
| 3.1.2291.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | deg 24 |
| Twin sextic algebra: | \(\Q\) $\times$ \(\Q\) $\times$ 4.2.20619.1 |
| Degree 4 sibling: | 4.2.20619.1 |
| Degree 6 sibling: | 6.2.47238129.1 |
| Degree 8 sibling: | 8.0.2231440831420641.1 |
| Degree 12 siblings: | deg 12, deg 12 |
| Minimal sibling: | 4.2.20619.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.2.0.1}{2} }^{3}$ | R | ${\href{/padicField/5.3.0.1}{3} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.3.0.1}{3} }^{2}$ | ${\href{/padicField/17.3.0.1}{3} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.3.0.1}{3} }^{2}$ | R | ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.3.0.1}{3} }^{2}$ | ${\href{/padicField/41.3.0.1}{3} }^{2}$ | ${\href{/padicField/43.3.0.1}{3} }^{2}$ | ${\href{/padicField/47.3.0.1}{3} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
|
\(29\)
| 29.1.2.1a1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 29.2.2.2a1.2 | $x^{4} + 48 x^{3} + 580 x^{2} + 96 x + 33$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(79\)
| 79.1.2.1a1.2 | $x^{2} + 237$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 79.2.2.2a1.2 | $x^{4} + 156 x^{3} + 6090 x^{2} + 468 x + 88$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |