Properties

Label 4.4.112908.1
Degree 44
Signature [4,0][4, 0]
Discriminant 112908112908
Root discriminant 18.3318.33
Ramified primes 2,3,972,3,97
Class number 11
Class group trivial
Galois group D4D_{4} (as 4T3)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^4 - x^3 - 16*x^2 - 4*x + 16)
 
Copy content gp:K = bnfinit(y^4 - y^3 - 16*y^2 - 4*y + 16, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^4 - x^3 - 16*x^2 - 4*x + 16);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^4 - x^3 - 16*x^2 - 4*x + 16)
 

x4x316x24x+16 x^{4} - x^{3} - 16x^{2} - 4x + 16 Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  44
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  [4,0][4, 0]
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   112908112908 =223972\medspace = 2^{2}\cdot 3\cdot 97^{2} Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  18.3318.33
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  231/2971/234.117444218463962\cdot 3^{1/2}97^{1/2}\approx 34.11744421846396
Ramified primes:   22, 33, 9797 Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  Q(3)\Q(\sqrt{3})
Aut(K/Q)\Aut(K/\Q):   C2C_2
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over Q\Q.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator aa)

11, aa, 12a212a\frac{1}{2}a^{2}-\frac{1}{2}a, 14a314a2\frac{1}{4}a^{3}-\frac{1}{4}a^{2} Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  22
Inessential primes:  22

Class group and class number

Ideal class group:  Trivial group, which has order 11
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  C2C_{2}, which has order 22
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  33
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   1 -1  (order 22) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   34a354a2212a+3\frac{3}{4}a^{3}-\frac{5}{4}a^{2}-\frac{21}{2}a+3, 14a3+14a232a+1\frac{1}{4}a^{3}+\frac{1}{4}a^{2}-\frac{3}{2}a+1, 132a3+12a299a113\frac{13}{2}a^{3}+\frac{1}{2}a^{2}-99a-113 Copy content Toggle raw display
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  92.4845210605 92.4845210605
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

lims1(s1)ζK(s)=(2r1(2π)r2RhwD(24(2π)092.484521060512112908(2.20189538681 \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{0}\cdot 92.4845210605 \cdot 1}{2\cdot\sqrt{112908}}\cr\approx \mathstrut & 2.20189538681 \end{aligned}

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^4 - x^3 - 16*x^2 - 4*x + 16) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^4 - x^3 - 16*x^2 - 4*x + 16, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^4 - x^3 - 16*x^2 - 4*x + 16); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^4 - x^3 - 16*x^2 - 4*x + 16); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

D4D_4 (as 4T3):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 8
The 5 conjugacy class representatives for D4D_{4}
Character table for D4D_{4}

Intermediate fields

Q(97)\Q(\sqrt{97})

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Galois closure: 8.8.1835743170816.1
Degree 4 sibling: 4.4.13968.1
Minimal sibling: 4.4.13968.1

Frobenius cycle types

pp 22 33 55 77 1111 1313 1717 1919 2323 2929 3131 3737 4141 4343 4747 5353 5959
Cycle type R R 4{\href{/padicField/5.4.0.1}{4} } 4{\href{/padicField/7.4.0.1}{4} } 22{\href{/padicField/11.2.0.1}{2} }^{2} 22{\href{/padicField/13.2.0.1}{2} }^{2} 4{\href{/padicField/17.4.0.1}{4} } 4{\href{/padicField/19.4.0.1}{4} } 22{\href{/padicField/23.2.0.1}{2} }^{2} 4{\href{/padicField/29.4.0.1}{4} } 2,12{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2} 22{\href{/padicField/37.2.0.1}{2} }^{2} 4{\href{/padicField/41.4.0.1}{4} } 2,12{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2} 22{\href{/padicField/47.2.0.1}{2} }^{2} 2,12{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2} 22{\href{/padicField/59.2.0.1}{2} }^{2}

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

ppLabelPolynomial ee ff cc Galois group Slope content
22 Copy content Toggle raw display Q2\Q_{2}x+1x + 1111100Trivial[ ][\ ]
Q2\Q_{2}x+1x + 1111100Trivial[ ][\ ]
2.1.2.2a1.2x2+2x+6x^{2} + 2 x + 6221122C2C_2[2][2]
33 Copy content Toggle raw display 3.2.1.0a1.1x2+2x+2x^{2} + 2 x + 2112200C2C_2[ ]2[\ ]^{2}
3.1.2.1a1.1x2+3x^{2} + 3221111C2C_2[ ]2[\ ]_{2}
9797 Copy content Toggle raw display 97.2.2.2a1.2x4+192x3+9226x2+960x+122x^{4} + 192 x^{3} + 9226 x^{2} + 960 x + 122222222C22C_2^2[ ]22[\ ]_{2}^{2}

Artin representations

Label Dimension Conductor Artin stem field GG Ind χ(c)\chi(c)
* 1.1.1t1.a.a11 11 Q\Q C1C_1 11 11
* 1.97.2t1.a.a11 97 97 Q(97)\Q(\sqrt{97}) C2C_2 (as 2T1) 11 11
1.12.2t1.a.a11 223 2^{2} \cdot 3 Q(3)\Q(\sqrt{3}) C2C_2 (as 2T1) 11 11
1.1164.2t1.a.a11 22397 2^{2} \cdot 3 \cdot 97 Q(291)\Q(\sqrt{291}) C2C_2 (as 2T1) 11 11
* 2.1164.4t3.a.a22 22397 2^{2} \cdot 3 \cdot 97 4.4.112908.1 D4D_{4} (as 4T3) 11 22

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)