Normalized defining polynomial
\( x^{4} - 3x^{2} - 14x + 53 \)
Invariants
Degree: | $4$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 2]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: |
\(13328\)
\(\medspace = 2^{4}\cdot 7^{2}\cdot 17\)
| sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | \(10.74\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: |
\(2\), \(7\), \(17\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$\card{ \Aut(K/\Q) }$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{47}a^{3}+\frac{7}{47}a^{2}-\frac{1}{47}a-\frac{21}{47}$
Monogenic: | No | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $1$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: |
\( -\frac{1}{47} a^{3} - \frac{7}{47} a^{2} + \frac{1}{47} a + \frac{21}{47} \)
(order $4$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental unit: |
$\frac{1}{47}a^{3}+\frac{7}{47}a^{2}-\frac{48}{47}a+\frac{73}{47}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 3.29189154683 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 8 |
The 5 conjugacy class representatives for $D_{4}$ |
Character table for $D_{4}$ |
Intermediate fields
\(\Q(\sqrt{-1}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | 8.0.51336683776.2 |
Degree 4 sibling: | 4.2.56644.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }$ | ${\href{/padicField/5.2.0.1}{2} }{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/11.4.0.1}{4} }$ | ${\href{/padicField/13.1.0.1}{1} }^{4}$ | R | ${\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }$ | ${\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }$ | ${\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{2}$ | ${\href{/padicField/53.1.0.1}{1} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
\(7\)
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
\(17\)
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.4.2t1.a.a | $1$ | $ 2^{2}$ | \(\Q(\sqrt{-1}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
1.17.2t1.a.a | $1$ | $ 17 $ | \(\Q(\sqrt{17}) \) | $C_2$ (as 2T1) | $1$ | $1$ | |
1.68.2t1.a.a | $1$ | $ 2^{2} \cdot 17 $ | \(\Q(\sqrt{-17}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 2.3332.4t3.b.a | $2$ | $ 2^{2} \cdot 7^{2} \cdot 17 $ | 4.0.13328.1 | $D_{4}$ (as 4T3) | $1$ | $0$ |