Normalized defining polynomial
\( x^{4} + 133x^{2} + 4356 \)
Invariants
| Degree: | $4$ |
| |
| Signature: | $[0, 2]$ |
| |
| Discriminant: |
\(1123600\)
\(\medspace = 2^{4}\cdot 5^{2}\cdot 53^{2}\)
|
| |
| Root discriminant: | \(32.56\) |
| |
| Galois root discriminant: | $2\cdot 5^{1/2}53^{1/2}\approx 32.55764119219941$ | ||
| Ramified primes: |
\(2\), \(5\), \(53\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_2^2$ |
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1060=2^{2}\cdot 5\cdot 53\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1060}(1,·)$, $\chi_{1060}(531,·)$, $\chi_{1060}(529,·)$, $\chi_{1060}(1059,·)$$\rbrace$ | ||
| This is a CM field. | |||
| Reflex fields: | \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-265}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{66}a^{3}+\frac{1}{66}a$
| Monogenic: | No | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}\times C_{4}$, which has order $8$ |
| |
| Narrow class group: | $C_{2}\times C_{4}$, which has order $8$ |
| |
| Relative class number: | $4$ |
Unit group
| Rank: | $1$ |
| |
| Torsion generator: |
\( -\frac{1}{66} a^{3} - \frac{67}{66} a \)
(order $4$)
|
| |
| Fundamental unit: |
$\frac{5699}{66}a^{3}+\frac{332597}{66}a$
|
| |
| Regulator: | \( 18.8091810128 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{2}\cdot 18.8091810128 \cdot 8}{4\cdot\sqrt{1123600}}\cr\approx \mathstrut & 1.40105038268 \end{aligned}\]
Galois group
| An abelian group of order 4 |
| The 4 conjugacy class representatives for $C_2^2$ |
| Character table for $C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-265}) \), \(\Q(\sqrt{265}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Multiplicative Galois module structure
| $U_{K^{gal}}/\textrm{Tors}(U_{K^{gal}}) \cong$ $A_1$ |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.2.0.1}{2} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.1.0.1}{1} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.2a1.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ |
| 2.1.2.2a1.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ | |
|
\(5\)
| 5.1.2.1a1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 5.1.2.1a1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
|
\(53\)
| 53.1.2.1a1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 53.1.2.1a1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |