Properties

Label 32.32.167...088.1
Degree $32$
Signature $[32, 0]$
Discriminant $1.671\times 10^{71}$
Root discriminant \(168.16\)
Ramified primes $2,97$
Class number not computed
Class group not computed
Galois group $C_{32}$ (as 32T33)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^32 - 97*x^30 + 3977*x^28 - 90598*x^26 + 1268954*x^24 - 11436203*x^22 + 67589988*x^20 - 262762815*x^18 + 665320090*x^16 - 1069475149*x^14 + 1039362469*x^12 - 561198156*x^10 + 148892090*x^8 - 18792198*x^6 + 1096973*x^4 - 25026*x^2 + 97)
 
gp: K = bnfinit(y^32 - 97*y^30 + 3977*y^28 - 90598*y^26 + 1268954*y^24 - 11436203*y^22 + 67589988*y^20 - 262762815*y^18 + 665320090*y^16 - 1069475149*y^14 + 1039362469*y^12 - 561198156*y^10 + 148892090*y^8 - 18792198*y^6 + 1096973*y^4 - 25026*y^2 + 97, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^32 - 97*x^30 + 3977*x^28 - 90598*x^26 + 1268954*x^24 - 11436203*x^22 + 67589988*x^20 - 262762815*x^18 + 665320090*x^16 - 1069475149*x^14 + 1039362469*x^12 - 561198156*x^10 + 148892090*x^8 - 18792198*x^6 + 1096973*x^4 - 25026*x^2 + 97);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 - 97*x^30 + 3977*x^28 - 90598*x^26 + 1268954*x^24 - 11436203*x^22 + 67589988*x^20 - 262762815*x^18 + 665320090*x^16 - 1069475149*x^14 + 1039362469*x^12 - 561198156*x^10 + 148892090*x^8 - 18792198*x^6 + 1096973*x^4 - 25026*x^2 + 97)
 

\( x^{32} - 97 x^{30} + 3977 x^{28} - 90598 x^{26} + 1268954 x^{24} - 11436203 x^{22} + 67589988 x^{20} + \cdots + 97 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $32$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[32, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(167064287751196233763024674646775194239336663364043996417475105771225088\) \(\medspace = 2^{32}\cdot 97^{31}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(168.16\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 97^{31/32}\approx 168.15706291895154$
Ramified primes:   \(2\), \(97\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{97}) \)
$\card{ \Gal(K/\Q) }$:  $32$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(388=2^{2}\cdot 97\)
Dirichlet character group:    $\lbrace$$\chi_{388}(1,·)$, $\chi_{388}(131,·)$, $\chi_{388}(263,·)$, $\chi_{388}(139,·)$, $\chi_{388}(269,·)$, $\chi_{388}(143,·)$, $\chi_{388}(273,·)$, $\chi_{388}(19,·)$, $\chi_{388}(33,·)$, $\chi_{388}(175,·)$, $\chi_{388}(51,·)$, $\chi_{388}(309,·)$, $\chi_{388}(55,·)$, $\chi_{388}(313,·)$, $\chi_{388}(63,·)$, $\chi_{388}(193,·)$, $\chi_{388}(67,·)$, $\chi_{388}(161,·)$, $\chi_{388}(311,·)$, $\chi_{388}(341,·)$, $\chi_{388}(343,·)$, $\chi_{388}(89,·)$, $\chi_{388}(271,·)$, $\chi_{388}(221,·)$, $\chi_{388}(105,·)$, $\chi_{388}(127,·)$, $\chi_{388}(109,·)$, $\chi_{388}(239,·)$, $\chi_{388}(241,·)$, $\chi_{388}(361,·)$, $\chi_{388}(319,·)$, $\chi_{388}(85,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{61}a^{24}+\frac{15}{61}a^{22}-\frac{12}{61}a^{20}+\frac{18}{61}a^{18}+\frac{14}{61}a^{16}-\frac{19}{61}a^{14}-\frac{20}{61}a^{12}+\frac{11}{61}a^{10}+\frac{10}{61}a^{8}-\frac{7}{61}a^{6}+\frac{18}{61}a^{4}+\frac{18}{61}a^{2}+\frac{5}{61}$, $\frac{1}{61}a^{25}+\frac{15}{61}a^{23}-\frac{12}{61}a^{21}+\frac{18}{61}a^{19}+\frac{14}{61}a^{17}-\frac{19}{61}a^{15}-\frac{20}{61}a^{13}+\frac{11}{61}a^{11}+\frac{10}{61}a^{9}-\frac{7}{61}a^{7}+\frac{18}{61}a^{5}+\frac{18}{61}a^{3}+\frac{5}{61}a$, $\frac{1}{61}a^{26}+\frac{7}{61}a^{22}+\frac{15}{61}a^{20}-\frac{12}{61}a^{18}+\frac{15}{61}a^{16}+\frac{21}{61}a^{14}+\frac{6}{61}a^{12}+\frac{28}{61}a^{10}+\frac{26}{61}a^{8}+\frac{1}{61}a^{6}-\frac{8}{61}a^{4}-\frac{21}{61}a^{2}-\frac{14}{61}$, $\frac{1}{61}a^{27}+\frac{7}{61}a^{23}+\frac{15}{61}a^{21}-\frac{12}{61}a^{19}+\frac{15}{61}a^{17}+\frac{21}{61}a^{15}+\frac{6}{61}a^{13}+\frac{28}{61}a^{11}+\frac{26}{61}a^{9}+\frac{1}{61}a^{7}-\frac{8}{61}a^{5}-\frac{21}{61}a^{3}-\frac{14}{61}a$, $\frac{1}{3721}a^{28}-\frac{12}{3721}a^{26}+\frac{7}{3721}a^{24}-\frac{1289}{3721}a^{22}+\frac{52}{3721}a^{20}-\frac{1000}{3721}a^{18}-\frac{1806}{3721}a^{16}+\frac{486}{3721}a^{14}+\frac{17}{3721}a^{12}+\frac{849}{3721}a^{10}-\frac{1348}{3721}a^{8}-\frac{203}{3721}a^{6}+\frac{1539}{3721}a^{4}+\frac{848}{3721}a^{2}+\frac{534}{3721}$, $\frac{1}{3721}a^{29}-\frac{12}{3721}a^{27}+\frac{7}{3721}a^{25}-\frac{1289}{3721}a^{23}+\frac{52}{3721}a^{21}-\frac{1000}{3721}a^{19}-\frac{1806}{3721}a^{17}+\frac{486}{3721}a^{15}+\frac{17}{3721}a^{13}+\frac{849}{3721}a^{11}-\frac{1348}{3721}a^{9}-\frac{203}{3721}a^{7}+\frac{1539}{3721}a^{5}+\frac{848}{3721}a^{3}+\frac{534}{3721}a$, $\frac{1}{61\!\cdots\!37}a^{30}+\frac{49\!\cdots\!70}{61\!\cdots\!37}a^{28}-\frac{84\!\cdots\!92}{61\!\cdots\!37}a^{26}+\frac{29\!\cdots\!62}{63\!\cdots\!47}a^{24}+\frac{26\!\cdots\!65}{61\!\cdots\!37}a^{22}-\frac{30\!\cdots\!88}{61\!\cdots\!37}a^{20}+\frac{82\!\cdots\!27}{61\!\cdots\!37}a^{18}+\frac{21\!\cdots\!27}{61\!\cdots\!37}a^{16}+\frac{51\!\cdots\!17}{61\!\cdots\!37}a^{14}+\frac{68\!\cdots\!27}{61\!\cdots\!37}a^{12}-\frac{11\!\cdots\!09}{61\!\cdots\!37}a^{10}-\frac{12\!\cdots\!35}{61\!\cdots\!37}a^{8}+\frac{10\!\cdots\!59}{61\!\cdots\!37}a^{6}+\frac{29\!\cdots\!03}{61\!\cdots\!37}a^{4}-\frac{15\!\cdots\!86}{61\!\cdots\!37}a^{2}-\frac{13\!\cdots\!99}{61\!\cdots\!37}$, $\frac{1}{61\!\cdots\!37}a^{31}+\frac{49\!\cdots\!70}{61\!\cdots\!37}a^{29}-\frac{84\!\cdots\!92}{61\!\cdots\!37}a^{27}+\frac{29\!\cdots\!62}{63\!\cdots\!47}a^{25}+\frac{26\!\cdots\!65}{61\!\cdots\!37}a^{23}-\frac{30\!\cdots\!88}{61\!\cdots\!37}a^{21}+\frac{82\!\cdots\!27}{61\!\cdots\!37}a^{19}+\frac{21\!\cdots\!27}{61\!\cdots\!37}a^{17}+\frac{51\!\cdots\!17}{61\!\cdots\!37}a^{15}+\frac{68\!\cdots\!27}{61\!\cdots\!37}a^{13}-\frac{11\!\cdots\!09}{61\!\cdots\!37}a^{11}-\frac{12\!\cdots\!35}{61\!\cdots\!37}a^{9}+\frac{10\!\cdots\!59}{61\!\cdots\!37}a^{7}+\frac{29\!\cdots\!03}{61\!\cdots\!37}a^{5}-\frac{15\!\cdots\!86}{61\!\cdots\!37}a^{3}-\frac{13\!\cdots\!99}{61\!\cdots\!37}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $31$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^32 - 97*x^30 + 3977*x^28 - 90598*x^26 + 1268954*x^24 - 11436203*x^22 + 67589988*x^20 - 262762815*x^18 + 665320090*x^16 - 1069475149*x^14 + 1039362469*x^12 - 561198156*x^10 + 148892090*x^8 - 18792198*x^6 + 1096973*x^4 - 25026*x^2 + 97)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^32 - 97*x^30 + 3977*x^28 - 90598*x^26 + 1268954*x^24 - 11436203*x^22 + 67589988*x^20 - 262762815*x^18 + 665320090*x^16 - 1069475149*x^14 + 1039362469*x^12 - 561198156*x^10 + 148892090*x^8 - 18792198*x^6 + 1096973*x^4 - 25026*x^2 + 97, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^32 - 97*x^30 + 3977*x^28 - 90598*x^26 + 1268954*x^24 - 11436203*x^22 + 67589988*x^20 - 262762815*x^18 + 665320090*x^16 - 1069475149*x^14 + 1039362469*x^12 - 561198156*x^10 + 148892090*x^8 - 18792198*x^6 + 1096973*x^4 - 25026*x^2 + 97);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 - 97*x^30 + 3977*x^28 - 90598*x^26 + 1268954*x^24 - 11436203*x^22 + 67589988*x^20 - 262762815*x^18 + 665320090*x^16 - 1069475149*x^14 + 1039362469*x^12 - 561198156*x^10 + 148892090*x^8 - 18792198*x^6 + 1096973*x^4 - 25026*x^2 + 97);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{32}$ (as 32T33):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 32
The 32 conjugacy class representatives for $C_{32}$
Character table for $C_{32}$

Intermediate fields

\(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1, 16.16.633251189136789386043275954593.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $16^{2}$ $32$ $32$ $16^{2}$ $32$ $32$ $32$ $32$ $32$ $16^{2}$ $32$ $32$ ${\href{/padicField/43.8.0.1}{8} }^{4}$ ${\href{/padicField/47.8.0.1}{8} }^{4}$ $16^{2}$ $32$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $16$$2$$8$$16$
Deg $16$$2$$8$$16$
\(97\) Copy content Toggle raw display Deg $32$$32$$1$$31$