Normalized defining polynomial
\( x^{32} - 97 x^{30} + 3977 x^{28} - 90598 x^{26} + 1268954 x^{24} - 11436203 x^{22} + 67589988 x^{20} - 262762815 x^{18} + 665320090 x^{16} - 1069475149 x^{14} + 1039362469 x^{12} - 561198156 x^{10} + 148892090 x^{8} - 18792198 x^{6} + 1096973 x^{4} - 25026 x^{2} + 97 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[32, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(167064287751196233763024674646775194239336663364043996417475105771225088=2^{32}\cdot 97^{31}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $168.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(388=2^{2}\cdot 97\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{388}(1,·)$, $\chi_{388}(131,·)$, $\chi_{388}(263,·)$, $\chi_{388}(139,·)$, $\chi_{388}(269,·)$, $\chi_{388}(143,·)$, $\chi_{388}(273,·)$, $\chi_{388}(19,·)$, $\chi_{388}(33,·)$, $\chi_{388}(175,·)$, $\chi_{388}(51,·)$, $\chi_{388}(309,·)$, $\chi_{388}(55,·)$, $\chi_{388}(313,·)$, $\chi_{388}(63,·)$, $\chi_{388}(193,·)$, $\chi_{388}(67,·)$, $\chi_{388}(161,·)$, $\chi_{388}(311,·)$, $\chi_{388}(341,·)$, $\chi_{388}(343,·)$, $\chi_{388}(89,·)$, $\chi_{388}(271,·)$, $\chi_{388}(221,·)$, $\chi_{388}(105,·)$, $\chi_{388}(127,·)$, $\chi_{388}(109,·)$, $\chi_{388}(239,·)$, $\chi_{388}(241,·)$, $\chi_{388}(361,·)$, $\chi_{388}(319,·)$, $\chi_{388}(85,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{61} a^{24} + \frac{15}{61} a^{22} - \frac{12}{61} a^{20} + \frac{18}{61} a^{18} + \frac{14}{61} a^{16} - \frac{19}{61} a^{14} - \frac{20}{61} a^{12} + \frac{11}{61} a^{10} + \frac{10}{61} a^{8} - \frac{7}{61} a^{6} + \frac{18}{61} a^{4} + \frac{18}{61} a^{2} + \frac{5}{61}$, $\frac{1}{61} a^{25} + \frac{15}{61} a^{23} - \frac{12}{61} a^{21} + \frac{18}{61} a^{19} + \frac{14}{61} a^{17} - \frac{19}{61} a^{15} - \frac{20}{61} a^{13} + \frac{11}{61} a^{11} + \frac{10}{61} a^{9} - \frac{7}{61} a^{7} + \frac{18}{61} a^{5} + \frac{18}{61} a^{3} + \frac{5}{61} a$, $\frac{1}{61} a^{26} + \frac{7}{61} a^{22} + \frac{15}{61} a^{20} - \frac{12}{61} a^{18} + \frac{15}{61} a^{16} + \frac{21}{61} a^{14} + \frac{6}{61} a^{12} + \frac{28}{61} a^{10} + \frac{26}{61} a^{8} + \frac{1}{61} a^{6} - \frac{8}{61} a^{4} - \frac{21}{61} a^{2} - \frac{14}{61}$, $\frac{1}{61} a^{27} + \frac{7}{61} a^{23} + \frac{15}{61} a^{21} - \frac{12}{61} a^{19} + \frac{15}{61} a^{17} + \frac{21}{61} a^{15} + \frac{6}{61} a^{13} + \frac{28}{61} a^{11} + \frac{26}{61} a^{9} + \frac{1}{61} a^{7} - \frac{8}{61} a^{5} - \frac{21}{61} a^{3} - \frac{14}{61} a$, $\frac{1}{3721} a^{28} - \frac{12}{3721} a^{26} + \frac{7}{3721} a^{24} - \frac{1289}{3721} a^{22} + \frac{52}{3721} a^{20} - \frac{1000}{3721} a^{18} - \frac{1806}{3721} a^{16} + \frac{486}{3721} a^{14} + \frac{17}{3721} a^{12} + \frac{849}{3721} a^{10} - \frac{1348}{3721} a^{8} - \frac{203}{3721} a^{6} + \frac{1539}{3721} a^{4} + \frac{848}{3721} a^{2} + \frac{534}{3721}$, $\frac{1}{3721} a^{29} - \frac{12}{3721} a^{27} + \frac{7}{3721} a^{25} - \frac{1289}{3721} a^{23} + \frac{52}{3721} a^{21} - \frac{1000}{3721} a^{19} - \frac{1806}{3721} a^{17} + \frac{486}{3721} a^{15} + \frac{17}{3721} a^{13} + \frac{849}{3721} a^{11} - \frac{1348}{3721} a^{9} - \frac{203}{3721} a^{7} + \frac{1539}{3721} a^{5} + \frac{848}{3721} a^{3} + \frac{534}{3721} a$, $\frac{1}{6160292918270057862611477120134988521808765710337} a^{30} + \frac{490246531310724507378130628303778995719393770}{6160292918270057862611477120134988521808765710337} a^{28} - \frac{8451546247125222616170769985771524965142249292}{6160292918270057862611477120134988521808765710337} a^{26} + \frac{29511920143891054779503990255904593372890462}{6344276949814683689610172111364560784561035747} a^{24} + \frac{2680036503117950843139671830562881436293641684565}{6160292918270057862611477120134988521808765710337} a^{22} - \frac{3013434650396073839387369374869800977765887507388}{6160292918270057862611477120134988521808765710337} a^{20} + \frac{823823569032494196415000723780134210412362658827}{6160292918270057862611477120134988521808765710337} a^{18} + \frac{2164973509160085569455317119806940470692554741327}{6160292918270057862611477120134988521808765710337} a^{16} + \frac{512021127111393137782122550056571876478175014117}{6160292918270057862611477120134988521808765710337} a^{14} + \frac{6805504712517969666490844342816895911708567327}{6160292918270057862611477120134988521808765710337} a^{12} - \frac{1145285774732348460786643458845171686684721081709}{6160292918270057862611477120134988521808765710337} a^{10} - \frac{1252467059091478869589761926725958528293858916435}{6160292918270057862611477120134988521808765710337} a^{8} + \frac{1024990450345270074233334148983731422466396304259}{6160292918270057862611477120134988521808765710337} a^{6} + \frac{2984633444043698815465661888051649950335157733603}{6160292918270057862611477120134988521808765710337} a^{4} - \frac{151577598274646724903550704005059245280676501786}{6160292918270057862611477120134988521808765710337} a^{2} - \frac{1392490906508925479664348349638778278128277265499}{6160292918270057862611477120134988521808765710337}$, $\frac{1}{6160292918270057862611477120134988521808765710337} a^{31} + \frac{490246531310724507378130628303778995719393770}{6160292918270057862611477120134988521808765710337} a^{29} - \frac{8451546247125222616170769985771524965142249292}{6160292918270057862611477120134988521808765710337} a^{27} + \frac{29511920143891054779503990255904593372890462}{6344276949814683689610172111364560784561035747} a^{25} + \frac{2680036503117950843139671830562881436293641684565}{6160292918270057862611477120134988521808765710337} a^{23} - \frac{3013434650396073839387369374869800977765887507388}{6160292918270057862611477120134988521808765710337} a^{21} + \frac{823823569032494196415000723780134210412362658827}{6160292918270057862611477120134988521808765710337} a^{19} + \frac{2164973509160085569455317119806940470692554741327}{6160292918270057862611477120134988521808765710337} a^{17} + \frac{512021127111393137782122550056571876478175014117}{6160292918270057862611477120134988521808765710337} a^{15} + \frac{6805504712517969666490844342816895911708567327}{6160292918270057862611477120134988521808765710337} a^{13} - \frac{1145285774732348460786643458845171686684721081709}{6160292918270057862611477120134988521808765710337} a^{11} - \frac{1252467059091478869589761926725958528293858916435}{6160292918270057862611477120134988521808765710337} a^{9} + \frac{1024990450345270074233334148983731422466396304259}{6160292918270057862611477120134988521808765710337} a^{7} + \frac{2984633444043698815465661888051649950335157733603}{6160292918270057862611477120134988521808765710337} a^{5} - \frac{151577598274646724903550704005059245280676501786}{6160292918270057862611477120134988521808765710337} a^{3} - \frac{1392490906508925479664348349638778278128277265499}{6160292918270057862611477120134988521808765710337} a$
Class group and class number
Not computed
Unit group
| Rank: | $31$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 32 |
| The 32 conjugacy class representatives for $C_{32}$ |
| Character table for $C_{32}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1, 16.16.633251189136789386043275954593.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16^{2}$ | $32$ | $32$ | $16^{2}$ | $32$ | $32$ | $32$ | $32$ | $32$ | $16^{2}$ | $32$ | $32$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{4}$ | $16^{2}$ | $32$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 97 | Data not computed | ||||||