Properties

Label 388.309
Modulus $388$
Conductor $97$
Order $16$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(388, base_ring=CyclotomicField(16))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,13]))
 
pari: [g,chi] = znchar(Mod(309,388))
 

Basic properties

Modulus: \(388\)
Conductor: \(97\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(16\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{97}(18,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 388.p

\(\chi_{388}(85,\cdot)\) \(\chi_{388}(89,\cdot)\) \(\chi_{388}(105,\cdot)\) \(\chi_{388}(109,\cdot)\) \(\chi_{388}(221,\cdot)\) \(\chi_{388}(273,\cdot)\) \(\chi_{388}(309,\cdot)\) \(\chi_{388}(361,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: Number field defined by a degree 16 polynomial

Values on generators

\((195,5)\) → \((1,e\left(\frac{13}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 388 }(309, a) \) \(1\)\(1\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{13}{16}\right)\)\(e\left(\frac{3}{16}\right)\)\(-i\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{5}{16}\right)\)\(e\left(\frac{11}{16}\right)\)\(e\left(\frac{5}{16}\right)\)\(e\left(\frac{13}{16}\right)\)\(e\left(\frac{1}{16}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 388 }(309,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 388 }(309,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 388 }(309,·),\chi_{ 388 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 388 }(309,·)) \;\) at \(\; a,b = \) e.g. 1,2