Normalized defining polynomial
\( x^{3} - x^{2} + 18044129x + 131076560441 \)
Invariants
| Degree: | $3$ |
| |
| Signature: | $[1, 1]$ |
| |
| Discriminant: |
\(-3618939289355450060\)
\(\medspace = -\,2^{2}\cdot 5\cdot 7^{2}\cdot 11^{2}\cdot 13\cdot 17^{2}\cdot 19\cdot 23^{2}\cdot 29^{2}\cdot 31^{2}\)
|
| |
| Root discriminant: | \($1\,535\,301$.82\) |
| |
| Galois root discriminant: | $2^{2/3}5^{1/2}7^{2/3}11^{2/3}13^{1/2}17^{2/3}19^{1/2}23^{2/3}29^{2/3}31^{2/3}\approx 5028883.700476278$ | ||
| Ramified primes: |
\(2\), \(5\), \(7\), \(11\), \(13\), \(17\), \(19\), \(23\), \(29\), \(31\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-1235}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{367}a^{2}-\frac{71}{367}a+\frac{39}{367}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | not computed |
| |
| Narrow class group: | not computed |
|
Unit group
| Rank: | $1$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental unit: | not computed |
| |
| Regulator: | not computed |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{1}\cdot(2\pi)^{1}\cdot R \cdot h}{2\cdot\sqrt{3618939289355450060}}\cr\mathstrut & \text{
Galois group
| A solvable group of order 6 |
| The 3 conjugacy class representatives for $S_3$ |
| Character table for $S_3$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | deg 6 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.3.0.1}{3} }$ | R | R | R | R | R | R | R | R | R | ${\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.3.0.1}{3} }$ | ${\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.3.0.1}{3} }$ | ${\href{/padicField/53.3.0.1}{3} }$ | ${\href{/padicField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.3.2a1.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
|
\(5\)
| $\Q_{5}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 5.1.2.1a1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
|
\(7\)
| 7.1.3.2a1.3 | $x^{3} + 21$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ |
|
\(11\)
| 11.1.3.2a1.1 | $x^{3} + 11$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
|
\(13\)
| $\Q_{13}$ | $x + 11$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 13.1.2.1a1.1 | $x^{2} + 13$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
|
\(17\)
| 17.1.3.2a1.1 | $x^{3} + 17$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
|
\(19\)
| $\Q_{19}$ | $x + 17$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 19.1.2.1a1.2 | $x^{2} + 38$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
|
\(23\)
| 23.1.3.2a1.1 | $x^{3} + 23$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
|
\(29\)
| 29.1.3.2a1.1 | $x^{3} + 29$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
|
\(31\)
| 31.1.3.2a1.2 | $x^{3} + 93$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ |