Resolvents shown for degrees $\leq 47$
Prime degree - none
6T2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1 $ |
$1$ |
$1$ |
$()$ |
| $ 2, 1 $ |
$3$ |
$2$ |
$(2,3)$ |
| $ 3 $ |
$2$ |
$3$ |
$(1,2,3)$ |
| Character table:
| |
2 1 1 .
3 1 . 1
1a 2a 3a
2P 1a 1a 3a
3P 1a 2a 1a
X.1 1 -1 1
X.2 2 . -1
X.3 1 1 1
|
|
Complete
list of indecomposable integral representations:
| Name | Dim |
$(1,2,3) \mapsto $ |
$(1,2) \mapsto $ |
| Triv | $1$ |
$\left(\begin{array}{r}1\end{array}\right)$ |
$\left(\begin{array}{r}1\end{array}\right)$ |
| Sign | $1$ |
$\left(\begin{array}{r}1\end{array}\right)$ |
$\left(\begin{array}{r}-1\end{array}\right)$ |
| $L$ | $2$ |
$\left(\begin{array}{rr}1 & 0\\0 & 1\end{array}\right)$ |
$\left(\begin{array}{rr}0 & 1\\1 & 0\end{array}\right)$ |
| $A$ | $2$ |
$\left(\begin{array}{rr}0 & 1\\-1 & -1\end{array}\right)$ |
$\left(\begin{array}{rr}1 & 0\\-1 & -1\end{array}\right)$ |
| $A'$ | $2$ |
$\left(\begin{array}{rr}0 & 1\\-1 & -1\end{array}\right)$ |
$\left(\begin{array}{rr}-1 & 0\\1 & 1\end{array}\right)$ |
| $(A,\textrm{Sign})$ | $3$ |
$\left(\begin{array}{rrr}0 & 1 & 0\\-1 & -1 & 0\\1 & 0 & 1\end{array}\right)$ |
$\left(\begin{array}{rrr}1 & 0 & 0\\-1 & -1 & 0\\-1 & 0 & -1\end{array}\right)$ |
| $(A',\textrm{Triv})$ | $3$ |
$\left(\begin{array}{rrr}0 & 1 & 0\\-1 & -1 & 0\\1 & 0 & 1\end{array}\right)$ |
$\left(\begin{array}{rrr}-1 & 0 & 0\\1 & 1 & 0\\1 & 0 & 1\end{array}\right)$ |
| $(A,L)$ | $4$ |
$\left(\begin{array}{rrrr}0 & 1 & 0 & 0\\-1 & -1 & 0 & 0\\-1 & 0 & 1 & 0\\1 & 0 & 0 & 1\end{array}\right)$ |
$\left(\begin{array}{rrrr}1 & 0 & 0 & 0\\-1 & -1 & 0 & 0\\1 & 0 & 0 & 1\\-1 & 0 & 1 & 0\end{array}\right)$ |
| $(A',L)$ | $4$ |
$\left(\begin{array}{rrrr}0 & 1 & 0 & 0\\-1 & -1 & 0 & 0\\1 & 0 & 1 & 0\\1 & 0 & 0 & 1\end{array}\right)$ |
$\left(\begin{array}{rrrr}-1 & 0 & 0 & 0\\1 & 1 & 0 & 0\\1 & 0 & 0 & 1\\1 & 0 & 1 & 0\end{array}\right)$ |
| $(A+A',L)$ | $6$ |
$\left(\begin{array}{rrrrrr}0 & 0 & 1 & 0 & 0 & 0\\0 & 0 & 0 & 1 & 0 & 0\\0 & 0 & 0 & 0 & 1 & 0\\0 & 0 & 0 & 0 & 0 & 1\\1 & 0 & 0 & 0 & 0 & 0\\0 & 1 & 0 & 0 & 0 & 0\end{array}\right)$ |
$\left(\begin{array}{rrrrrr}0 & 0 & 0 & 1 & 0 & 0\\0 & 0 & 1 & 0 & 0 & 0\\0 & 1 & 0 & 0 & 0 & 0\\1 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 1\\0 & 0 & 0 & 0 & 1 & 0\end{array}\right)$ |
|
The decomposition of an arbitrary integral representation as a direct
sum of indecomposables is not unique, in general. It
is unique up to the following isomorphisms: