Properties

Label 22.6.984...504.1
Degree $22$
Signature $[6, 8]$
Discriminant $9.841\times 10^{120}$
Root discriminant \($315\,997$.87\)
Ramified primes $2,971,25709231$
Class number not computed
Class group not computed
Galois group $C_2^{10}.S_{11}$ (as 22T50)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^22 - 1256355480*x^20 + 346321257364221748*x^18 - 281369885833667927777292253*x^16 + 211852233873305124874717191486598021*x^14 - 51988958787642502292357344580089958853671609*x^12 + 16164751063634090233408096678662142988343936090500554*x^10 - 12944956884362741410715058367642423772239748398213938868430054*x^8 + 2876793194724455010428571062539352506917449465867424287833700972460630*x^6 - 30897186782318789777365615471712373496217555545254574233072653398519233478514*x^4 + 15685554292006069651346777755707519381113345792414561710283876785994521259120839545704*x^2 - 3765085538799951525236302125814989854461975604609828445625128934755165972532492439340389009701)
 
Copy content gp:K = bnfinit(y^22 - 1256355480*y^20 + 346321257364221748*y^18 - 281369885833667927777292253*y^16 + 211852233873305124874717191486598021*y^14 - 51988958787642502292357344580089958853671609*y^12 + 16164751063634090233408096678662142988343936090500554*y^10 - 12944956884362741410715058367642423772239748398213938868430054*y^8 + 2876793194724455010428571062539352506917449465867424287833700972460630*y^6 - 30897186782318789777365615471712373496217555545254574233072653398519233478514*y^4 + 15685554292006069651346777755707519381113345792414561710283876785994521259120839545704*y^2 - 3765085538799951525236302125814989854461975604609828445625128934755165972532492439340389009701, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^22 - 1256355480*x^20 + 346321257364221748*x^18 - 281369885833667927777292253*x^16 + 211852233873305124874717191486598021*x^14 - 51988958787642502292357344580089958853671609*x^12 + 16164751063634090233408096678662142988343936090500554*x^10 - 12944956884362741410715058367642423772239748398213938868430054*x^8 + 2876793194724455010428571062539352506917449465867424287833700972460630*x^6 - 30897186782318789777365615471712373496217555545254574233072653398519233478514*x^4 + 15685554292006069651346777755707519381113345792414561710283876785994521259120839545704*x^2 - 3765085538799951525236302125814989854461975604609828445625128934755165972532492439340389009701);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^22 - 1256355480*x^20 + 346321257364221748*x^18 - 281369885833667927777292253*x^16 + 211852233873305124874717191486598021*x^14 - 51988958787642502292357344580089958853671609*x^12 + 16164751063634090233408096678662142988343936090500554*x^10 - 12944956884362741410715058367642423772239748398213938868430054*x^8 + 2876793194724455010428571062539352506917449465867424287833700972460630*x^6 - 30897186782318789777365615471712373496217555545254574233072653398519233478514*x^4 + 15685554292006069651346777755707519381113345792414561710283876785994521259120839545704*x^2 - 3765085538799951525236302125814989854461975604609828445625128934755165972532492439340389009701)
 

\( x^{22} - 1256355480 x^{20} + \cdots - 37\!\cdots\!01 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $22$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[6, 8]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(984\!\cdots\!504\) \(\medspace = 2^{22}\cdot 971^{11}\cdot 25709231^{11}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \($315\,997$.87\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(971\), \(25709231\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{24963663301}$)
$\Aut(K/\Q)$:   $C_2$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{24963663301}a^{6}-\frac{1256355480}{24963663301}a^{4}+\frac{6898162534}{24963663301}a^{2}$, $\frac{1}{24963663301}a^{7}-\frac{1256355480}{24963663301}a^{5}+\frac{6898162534}{24963663301}a^{3}$, $\frac{1}{62\cdots 01}a^{8}-\frac{1256355480}{62\cdots 01}a^{6}+\frac{34\cdots 48}{62\cdots 01}a^{4}-\frac{8857655950}{24963663301}a^{2}$, $\frac{1}{62\cdots 01}a^{9}-\frac{1256355480}{62\cdots 01}a^{7}+\frac{34\cdots 48}{62\cdots 01}a^{5}-\frac{8857655950}{24963663301}a^{3}$, $\frac{1}{15\cdots 01}a^{10}-\frac{1256355480}{15\cdots 01}a^{8}+\frac{34\cdots 48}{15\cdots 01}a^{6}-\frac{11\cdots 53}{62\cdots 01}a^{4}-\frac{4094823597}{24963663301}a^{2}$, $\frac{1}{15\cdots 01}a^{11}-\frac{1256355480}{15\cdots 01}a^{9}+\frac{34\cdots 48}{15\cdots 01}a^{7}-\frac{11\cdots 53}{62\cdots 01}a^{5}-\frac{4094823597}{24963663301}a^{3}$, $\frac{1}{38\cdots 01}a^{12}-\frac{1256355480}{38\cdots 01}a^{10}+\frac{34\cdots 48}{38\cdots 01}a^{8}-\frac{11\cdots 53}{15\cdots 01}a^{6}+\frac{339951072009421}{62\cdots 01}a^{4}+\frac{3286899825}{24963663301}a^{2}$, $\frac{1}{38\cdots 01}a^{13}-\frac{1256355480}{38\cdots 01}a^{11}+\frac{34\cdots 48}{38\cdots 01}a^{9}-\frac{11\cdots 53}{15\cdots 01}a^{7}+\frac{339951072009421}{62\cdots 01}a^{5}+\frac{3286899825}{24963663301}a^{3}$, $\frac{1}{96\cdots 01}a^{14}-\frac{1256355480}{96\cdots 01}a^{12}+\frac{34\cdots 48}{96\cdots 01}a^{10}-\frac{11\cdots 53}{38\cdots 01}a^{8}+\frac{339951072009421}{15\cdots 01}a^{6}-\frac{3341843982509}{62\cdots 01}a^{4}-\frac{8304098848}{24963663301}a^{2}$, $\frac{1}{96\cdots 01}a^{15}-\frac{1256355480}{96\cdots 01}a^{13}+\frac{34\cdots 48}{96\cdots 01}a^{11}-\frac{11\cdots 53}{38\cdots 01}a^{9}+\frac{339951072009421}{15\cdots 01}a^{7}-\frac{3341843982509}{62\cdots 01}a^{5}-\frac{8304098848}{24963663301}a^{3}$, $\frac{1}{24\cdots 01}a^{16}-\frac{1256355480}{24\cdots 01}a^{14}+\frac{34\cdots 48}{24\cdots 01}a^{12}-\frac{11\cdots 53}{96\cdots 01}a^{10}+\frac{339951072009421}{38\cdots 01}a^{8}-\frac{3341843982509}{15\cdots 01}a^{6}+\frac{41623227754}{62\cdots 01}a^{4}-\frac{1335239054}{24963663301}a^{2}$, $\frac{1}{24\cdots 01}a^{17}-\frac{1256355480}{24\cdots 01}a^{15}+\frac{34\cdots 48}{24\cdots 01}a^{13}-\frac{11\cdots 53}{96\cdots 01}a^{11}+\frac{339951072009421}{38\cdots 01}a^{9}-\frac{3341843982509}{15\cdots 01}a^{7}+\frac{41623227754}{62\cdots 01}a^{5}-\frac{1335239054}{24963663301}a^{3}$, $\frac{1}{60\cdots 01}a^{18}-\frac{1256355480}{60\cdots 01}a^{16}+\frac{34\cdots 48}{60\cdots 01}a^{14}-\frac{11\cdots 53}{24\cdots 01}a^{12}+\frac{339951072009421}{96\cdots 01}a^{10}-\frac{3341843982509}{38\cdots 01}a^{8}+\frac{41623227754}{15\cdots 01}a^{6}-\frac{1335239054}{62\cdots 01}a^{4}+\frac{11886630}{24963663301}a^{2}$, $\frac{1}{60\cdots 01}a^{19}-\frac{1256355480}{60\cdots 01}a^{17}+\frac{34\cdots 48}{60\cdots 01}a^{15}-\frac{11\cdots 53}{24\cdots 01}a^{13}+\frac{339951072009421}{96\cdots 01}a^{11}-\frac{3341843982509}{38\cdots 01}a^{9}+\frac{41623227754}{15\cdots 01}a^{7}-\frac{1335239054}{62\cdots 01}a^{5}+\frac{11886630}{24963663301}a^{3}$, $\frac{1}{19\cdots 99}a^{20}-\frac{71\cdots 47}{19\cdots 99}a^{18}-\frac{28\cdots 13}{19\cdots 99}a^{16}+\frac{39\cdots 67}{79\cdots 99}a^{14}-\frac{38\cdots 89}{31\cdots 99}a^{12}-\frac{37\cdots 00}{12\cdots 99}a^{10}-\frac{13\cdots 95}{51\cdots 99}a^{8}-\frac{49\cdots 04}{20\cdots 99}a^{6}-\frac{18\cdots 90}{82\cdots 99}a^{4}-\frac{27\cdots 79}{32\cdots 99}a^{2}+\frac{12\cdots 35}{13\cdots 99}$, $\frac{1}{19\cdots 99}a^{21}-\frac{71\cdots 47}{19\cdots 99}a^{19}-\frac{28\cdots 13}{19\cdots 99}a^{17}+\frac{39\cdots 67}{79\cdots 99}a^{15}-\frac{38\cdots 89}{31\cdots 99}a^{13}-\frac{37\cdots 00}{12\cdots 99}a^{11}-\frac{13\cdots 95}{51\cdots 99}a^{9}-\frac{49\cdots 04}{20\cdots 99}a^{7}-\frac{18\cdots 90}{82\cdots 99}a^{5}-\frac{27\cdots 79}{32\cdots 99}a^{3}+\frac{12\cdots 35}{13\cdots 99}a$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  not computed
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  not computed
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $13$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:  not computed
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{6}\cdot(2\pi)^{8}\cdot R \cdot h}{2\cdot\sqrt{9841275385698713547061800803050974420965363933658706138702352603003020290397779358031956909097305281204793677693797269504}}\cr\mathstrut & \text{ some values not computed } \end{aligned}\]

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^22 - 1256355480*x^20 + 346321257364221748*x^18 - 281369885833667927777292253*x^16 + 211852233873305124874717191486598021*x^14 - 51988958787642502292357344580089958853671609*x^12 + 16164751063634090233408096678662142988343936090500554*x^10 - 12944956884362741410715058367642423772239748398213938868430054*x^8 + 2876793194724455010428571062539352506917449465867424287833700972460630*x^6 - 30897186782318789777365615471712373496217555545254574233072653398519233478514*x^4 + 15685554292006069651346777755707519381113345792414561710283876785994521259120839545704*x^2 - 3765085538799951525236302125814989854461975604609828445625128934755165972532492439340389009701) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^22 - 1256355480*x^20 + 346321257364221748*x^18 - 281369885833667927777292253*x^16 + 211852233873305124874717191486598021*x^14 - 51988958787642502292357344580089958853671609*x^12 + 16164751063634090233408096678662142988343936090500554*x^10 - 12944956884362741410715058367642423772239748398213938868430054*x^8 + 2876793194724455010428571062539352506917449465867424287833700972460630*x^6 - 30897186782318789777365615471712373496217555545254574233072653398519233478514*x^4 + 15685554292006069651346777755707519381113345792414561710283876785994521259120839545704*x^2 - 3765085538799951525236302125814989854461975604609828445625128934755165972532492439340389009701, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^22 - 1256355480*x^20 + 346321257364221748*x^18 - 281369885833667927777292253*x^16 + 211852233873305124874717191486598021*x^14 - 51988958787642502292357344580089958853671609*x^12 + 16164751063634090233408096678662142988343936090500554*x^10 - 12944956884362741410715058367642423772239748398213938868430054*x^8 + 2876793194724455010428571062539352506917449465867424287833700972460630*x^6 - 30897186782318789777365615471712373496217555545254574233072653398519233478514*x^4 + 15685554292006069651346777755707519381113345792414561710283876785994521259120839545704*x^2 - 3765085538799951525236302125814989854461975604609828445625128934755165972532492439340389009701); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^22 - 1256355480*x^20 + 346321257364221748*x^18 - 281369885833667927777292253*x^16 + 211852233873305124874717191486598021*x^14 - 51988958787642502292357344580089958853671609*x^12 + 16164751063634090233408096678662142988343936090500554*x^10 - 12944956884362741410715058367642423772239748398213938868430054*x^8 + 2876793194724455010428571062539352506917449465867424287833700972460630*x^6 - 30897186782318789777365615471712373496217555545254574233072653398519233478514*x^4 + 15685554292006069651346777755707519381113345792414561710283876785994521259120839545704*x^2 - 3765085538799951525236302125814989854461975604609828445625128934755165972532492439340389009701); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^{10}.S_{11}$ (as 22T50):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 40874803200
The 376 conjugacy class representatives for $C_2^{10}.S_{11}$
Character table for $C_2^{10}.S_{11}$

Intermediate fields

11.3.24963663301.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 22 sibling: data not computed
Degree 44 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.11.0.1}{11} }^{2}$ ${\href{/padicField/5.11.0.1}{11} }^{2}$ $16{,}\,{\href{/padicField/7.3.0.1}{3} }^{2}$ ${\href{/padicField/11.11.0.1}{11} }^{2}$ $16{,}\,{\href{/padicField/13.3.0.1}{3} }^{2}$ ${\href{/padicField/17.9.0.1}{9} }^{2}{,}\,{\href{/padicField/17.4.0.1}{4} }$ ${\href{/padicField/19.12.0.1}{12} }{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}$ ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ ${\href{/padicField/29.14.0.1}{14} }{,}\,{\href{/padicField/29.4.0.1}{4} }^{2}$ ${\href{/padicField/31.14.0.1}{14} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ ${\href{/padicField/37.9.0.1}{9} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ $18{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ ${\href{/padicField/43.5.0.1}{5} }^{4}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ ${\href{/padicField/47.5.0.1}{5} }^{4}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ ${\href{/padicField/53.14.0.1}{14} }{,}\,{\href{/padicField/53.3.0.1}{3} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }$ ${\href{/padicField/59.14.0.1}{14} }{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.5.2.10a6.2$x^{10} + 2 x^{9} + 4 x^{7} + 2 x^{6} + 2 x^{5} + 5 x^{4} + 4 x^{2} + 7$$2$$5$$10$$C_2 \times (C_2^4 : C_5)$$$[2, 2, 2, 2, 2]^{5}$$
2.6.2.12a8.1$x^{12} + 2 x^{11} + 2 x^{10} + 4 x^{9} + 5 x^{8} + 4 x^{7} + 7 x^{6} + 6 x^{5} + 4 x^{4} + 4 x^{3} + 3 x^{2} + 2 x + 3$$2$$6$$12$12T134$$[2, 2, 2, 2, 2, 2]^{6}$$
\(971\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$$[\ ]_{2}$$
Deg $2$$2$$1$$1$$C_2$$$[\ ]_{2}$$
Deg $2$$2$$1$$1$$C_2$$$[\ ]_{2}$$
Deg $2$$2$$1$$1$$C_2$$$[\ ]_{2}$$
Deg $14$$2$$7$$7$
\(25709231\) Copy content Toggle raw display Deg $4$$2$$2$$2$
Deg $4$$2$$2$$2$
Deg $6$$2$$3$$3$
Deg $8$$2$$4$$4$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)