Normalized defining polynomial
\( x^{22} - 1256355480 x^{20} + \cdots - 37\!\cdots\!01 \)
Invariants
| Degree: | $22$ |
| |
| Signature: | $[6, 8]$ |
| |
| Discriminant: |
\(984\!\cdots\!504\)
\(\medspace = 2^{22}\cdot 971^{11}\cdot 25709231^{11}\)
|
| |
| Root discriminant: | \($315\,997$.87\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(971\), \(25709231\)
|
| |
| Discriminant root field: | $\Q(\sqrt{24963663301}$) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{24963663301}a^{6}-\frac{1256355480}{24963663301}a^{4}+\frac{6898162534}{24963663301}a^{2}$, $\frac{1}{24963663301}a^{7}-\frac{1256355480}{24963663301}a^{5}+\frac{6898162534}{24963663301}a^{3}$, $\frac{1}{62\cdots 01}a^{8}-\frac{1256355480}{62\cdots 01}a^{6}+\frac{34\cdots 48}{62\cdots 01}a^{4}-\frac{8857655950}{24963663301}a^{2}$, $\frac{1}{62\cdots 01}a^{9}-\frac{1256355480}{62\cdots 01}a^{7}+\frac{34\cdots 48}{62\cdots 01}a^{5}-\frac{8857655950}{24963663301}a^{3}$, $\frac{1}{15\cdots 01}a^{10}-\frac{1256355480}{15\cdots 01}a^{8}+\frac{34\cdots 48}{15\cdots 01}a^{6}-\frac{11\cdots 53}{62\cdots 01}a^{4}-\frac{4094823597}{24963663301}a^{2}$, $\frac{1}{15\cdots 01}a^{11}-\frac{1256355480}{15\cdots 01}a^{9}+\frac{34\cdots 48}{15\cdots 01}a^{7}-\frac{11\cdots 53}{62\cdots 01}a^{5}-\frac{4094823597}{24963663301}a^{3}$, $\frac{1}{38\cdots 01}a^{12}-\frac{1256355480}{38\cdots 01}a^{10}+\frac{34\cdots 48}{38\cdots 01}a^{8}-\frac{11\cdots 53}{15\cdots 01}a^{6}+\frac{339951072009421}{62\cdots 01}a^{4}+\frac{3286899825}{24963663301}a^{2}$, $\frac{1}{38\cdots 01}a^{13}-\frac{1256355480}{38\cdots 01}a^{11}+\frac{34\cdots 48}{38\cdots 01}a^{9}-\frac{11\cdots 53}{15\cdots 01}a^{7}+\frac{339951072009421}{62\cdots 01}a^{5}+\frac{3286899825}{24963663301}a^{3}$, $\frac{1}{96\cdots 01}a^{14}-\frac{1256355480}{96\cdots 01}a^{12}+\frac{34\cdots 48}{96\cdots 01}a^{10}-\frac{11\cdots 53}{38\cdots 01}a^{8}+\frac{339951072009421}{15\cdots 01}a^{6}-\frac{3341843982509}{62\cdots 01}a^{4}-\frac{8304098848}{24963663301}a^{2}$, $\frac{1}{96\cdots 01}a^{15}-\frac{1256355480}{96\cdots 01}a^{13}+\frac{34\cdots 48}{96\cdots 01}a^{11}-\frac{11\cdots 53}{38\cdots 01}a^{9}+\frac{339951072009421}{15\cdots 01}a^{7}-\frac{3341843982509}{62\cdots 01}a^{5}-\frac{8304098848}{24963663301}a^{3}$, $\frac{1}{24\cdots 01}a^{16}-\frac{1256355480}{24\cdots 01}a^{14}+\frac{34\cdots 48}{24\cdots 01}a^{12}-\frac{11\cdots 53}{96\cdots 01}a^{10}+\frac{339951072009421}{38\cdots 01}a^{8}-\frac{3341843982509}{15\cdots 01}a^{6}+\frac{41623227754}{62\cdots 01}a^{4}-\frac{1335239054}{24963663301}a^{2}$, $\frac{1}{24\cdots 01}a^{17}-\frac{1256355480}{24\cdots 01}a^{15}+\frac{34\cdots 48}{24\cdots 01}a^{13}-\frac{11\cdots 53}{96\cdots 01}a^{11}+\frac{339951072009421}{38\cdots 01}a^{9}-\frac{3341843982509}{15\cdots 01}a^{7}+\frac{41623227754}{62\cdots 01}a^{5}-\frac{1335239054}{24963663301}a^{3}$, $\frac{1}{60\cdots 01}a^{18}-\frac{1256355480}{60\cdots 01}a^{16}+\frac{34\cdots 48}{60\cdots 01}a^{14}-\frac{11\cdots 53}{24\cdots 01}a^{12}+\frac{339951072009421}{96\cdots 01}a^{10}-\frac{3341843982509}{38\cdots 01}a^{8}+\frac{41623227754}{15\cdots 01}a^{6}-\frac{1335239054}{62\cdots 01}a^{4}+\frac{11886630}{24963663301}a^{2}$, $\frac{1}{60\cdots 01}a^{19}-\frac{1256355480}{60\cdots 01}a^{17}+\frac{34\cdots 48}{60\cdots 01}a^{15}-\frac{11\cdots 53}{24\cdots 01}a^{13}+\frac{339951072009421}{96\cdots 01}a^{11}-\frac{3341843982509}{38\cdots 01}a^{9}+\frac{41623227754}{15\cdots 01}a^{7}-\frac{1335239054}{62\cdots 01}a^{5}+\frac{11886630}{24963663301}a^{3}$, $\frac{1}{19\cdots 99}a^{20}-\frac{71\cdots 47}{19\cdots 99}a^{18}-\frac{28\cdots 13}{19\cdots 99}a^{16}+\frac{39\cdots 67}{79\cdots 99}a^{14}-\frac{38\cdots 89}{31\cdots 99}a^{12}-\frac{37\cdots 00}{12\cdots 99}a^{10}-\frac{13\cdots 95}{51\cdots 99}a^{8}-\frac{49\cdots 04}{20\cdots 99}a^{6}-\frac{18\cdots 90}{82\cdots 99}a^{4}-\frac{27\cdots 79}{32\cdots 99}a^{2}+\frac{12\cdots 35}{13\cdots 99}$, $\frac{1}{19\cdots 99}a^{21}-\frac{71\cdots 47}{19\cdots 99}a^{19}-\frac{28\cdots 13}{19\cdots 99}a^{17}+\frac{39\cdots 67}{79\cdots 99}a^{15}-\frac{38\cdots 89}{31\cdots 99}a^{13}-\frac{37\cdots 00}{12\cdots 99}a^{11}-\frac{13\cdots 95}{51\cdots 99}a^{9}-\frac{49\cdots 04}{20\cdots 99}a^{7}-\frac{18\cdots 90}{82\cdots 99}a^{5}-\frac{27\cdots 79}{32\cdots 99}a^{3}+\frac{12\cdots 35}{13\cdots 99}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | not computed |
| |
| Narrow class group: | not computed |
|
Unit group
| Rank: | $13$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: | not computed |
| |
| Regulator: | not computed |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{6}\cdot(2\pi)^{8}\cdot R \cdot h}{2\cdot\sqrt{9841275385698713547061800803050974420965363933658706138702352603003020290397779358031956909097305281204793677693797269504}}\cr\mathstrut & \text{
Galois group
$C_2^{10}.S_{11}$ (as 22T50):
| A non-solvable group of order 40874803200 |
| The 376 conjugacy class representatives for $C_2^{10}.S_{11}$ |
| Character table for $C_2^{10}.S_{11}$ |
Intermediate fields
| 11.3.24963663301.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 22 sibling: | data not computed |
| Degree 44 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.11.0.1}{11} }^{2}$ | ${\href{/padicField/5.11.0.1}{11} }^{2}$ | $16{,}\,{\href{/padicField/7.3.0.1}{3} }^{2}$ | ${\href{/padicField/11.11.0.1}{11} }^{2}$ | $16{,}\,{\href{/padicField/13.3.0.1}{3} }^{2}$ | ${\href{/padicField/17.9.0.1}{9} }^{2}{,}\,{\href{/padicField/17.4.0.1}{4} }$ | ${\href{/padicField/19.12.0.1}{12} }{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.14.0.1}{14} }{,}\,{\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.14.0.1}{14} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.9.0.1}{9} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | $18{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.5.0.1}{5} }^{4}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.5.0.1}{5} }^{4}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.14.0.1}{14} }{,}\,{\href{/padicField/53.3.0.1}{3} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.14.0.1}{14} }{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.5.2.10a6.2 | $x^{10} + 2 x^{9} + 4 x^{7} + 2 x^{6} + 2 x^{5} + 5 x^{4} + 4 x^{2} + 7$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $$[2, 2, 2, 2, 2]^{5}$$ |
| 2.6.2.12a8.1 | $x^{12} + 2 x^{11} + 2 x^{10} + 4 x^{9} + 5 x^{8} + 4 x^{7} + 7 x^{6} + 6 x^{5} + 4 x^{4} + 4 x^{3} + 3 x^{2} + 2 x + 3$ | $2$ | $6$ | $12$ | 12T134 | $$[2, 2, 2, 2, 2, 2]^{6}$$ | |
|
\(971\)
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $14$ | $2$ | $7$ | $7$ | ||||
|
\(25709231\)
| Deg $4$ | $2$ | $2$ | $2$ | |||
| Deg $4$ | $2$ | $2$ | $2$ | ||||
| Deg $6$ | $2$ | $3$ | $3$ | ||||
| Deg $8$ | $2$ | $4$ | $4$ |