Label 22T50
Degree $22$
Order $40874803200$
Cyclic no
Abelian no
Solvable no
Primitive no
$p$-group no

Related objects

Learn more about

Group action invariants

Degree $n$:  $22$
Transitive number $t$:  $50$
Parity:  $-1$
Primitive:  no
Nilpotency class:  $-1$ (not nilpotent)
$|\Aut(F/K)|$:  $2$
Generators:  (3,13,7,22,9,12,17,4,14,8,21,10,11,18)(5,6)(15,20,16,19), (1,4,21,19,7,2,3,22,20,8)(5,17,15,11,6,18,16,12)(9,10)

Low degree resolvents

|G/N|Galois groups for stem field(s)
$2$:  $C_2$
$39916800$:  $S_{11}$

Resolvents shown for degrees $\leq 47$


Degree 2: None

Degree 11: $S_{11}$

Low degree siblings

22T51, 44T1749

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

There are 376 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $40874803200=2^{18} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 11$
Cyclic:  no
Abelian:  no
Solvable:  no
GAP id:  not available
Character table: not available.