Normalized defining polynomial
\( x^{22} + x^{20} - 12x^{14} - 14x^{12} + 16x^{10} + 28x^{8} + x^{6} - 14x^{4} - 7x^{2} - 1 \)
Invariants
| Degree: | $22$ |
| |
| Signature: | $[2, 10]$ |
| |
| Discriminant: |
\(168783011453769015346390368256\)
\(\medspace = 2^{22}\cdot 200601609583^{2}\)
|
| |
| Root discriminant: | \(21.31\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(200601609583\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$86a^{20}+43a^{18}-21a^{16}+11a^{14}-1037a^{12}-685a^{10}+1713a^{8}+1545a^{6}-684a^{4}-855a^{2}-172$, $a$, $306a^{20}+148a^{18}-76a^{16}+40a^{14}-3692a^{12}-2377a^{10}+6119a^{8}+5399a^{6}-2483a^{4}-2993a^{2}-590$, $390a^{21}+187a^{19}-98a^{17}+50a^{15}-4707a^{13}-3011a^{11}+7814a^{9}+6865a^{7}-3183a^{5}-3815a^{3}-751a$, $86a^{20}+43a^{18}-21a^{16}+11a^{14}-1037a^{12}-685a^{10}+1713a^{8}+1545a^{6}-684a^{4}-854a^{2}-172$, $361a^{20}+174a^{18}-90a^{16}+47a^{14}-4356a^{12}-2797a^{10}+7224a^{8}+6362a^{6}-2936a^{4}-3531a^{2}-696$, $149a^{20}+72a^{18}-37a^{16}+19a^{14}-1798a^{12}-1157a^{10}+2979a^{8}+2633a^{6}-1206a^{4}-1461a^{2}-291$, $55a^{21}+203a^{20}+26a^{19}+98a^{18}-13a^{17}-50a^{16}+8a^{15}+27a^{14}-663a^{13}-2449a^{12}-419a^{11}-1574a^{10}+1094a^{9}+4055a^{8}+950a^{7}+3573a^{6}-448a^{5}-1645a^{4}-523a^{3}-1979a^{2}-101a-390$, $106a^{21}-106a^{20}+51a^{19}-51a^{18}-26a^{17}+26a^{16}+14a^{15}-14a^{14}-1279a^{13}+1279a^{12}-820a^{11}+820a^{10}+2116a^{9}-2116a^{8}+1863a^{7}-1863a^{6}-857a^{5}+857a^{4}-1031a^{3}+1031a^{2}-204a+204$, $201a^{21}+187a^{20}+98a^{19}+89a^{18}-50a^{17}-47a^{16}+26a^{15}+24a^{14}-2425a^{13}-2257a^{12}-1571a^{11}-1436a^{10}+4019a^{9}+3748a^{8}+3564a^{7}+3279a^{6}-1625a^{5}-1533a^{4}-1976a^{3}-1821a^{2}-393a-356$, $212a^{21}-113a^{20}+101a^{19}-53a^{18}-52a^{17}+29a^{16}+28a^{15}-14a^{14}-2558a^{13}+1365a^{12}-1628a^{11}+859a^{10}+4234a^{9}-2272a^{8}+3708a^{7}-1973a^{6}-1724a^{5}+932a^{4}-2053a^{3}+1101a^{2}-404a+216$
|
| |
| Regulator: | \( 355604.295989 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{10}\cdot 355604.295989 \cdot 1}{2\cdot\sqrt{168783011453769015346390368256}}\cr\approx \mathstrut & 0.166008877310 \end{aligned}\] (assuming GRH)
Galois group
$C_2^{10}.S_{11}$ (as 22T51):
| A non-solvable group of order 40874803200 |
| The 376 conjugacy class representatives for $C_2^{10}.S_{11}$ |
| Character table for $C_2^{10}.S_{11}$ |
Intermediate fields
| 11.5.200601609583.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 22 sibling: | data not computed |
| Degree 44 sibling: | data not computed |
| Minimal sibling: | 22.8.88784765467352548428076714954223549740883971996276485665050840867788808040301622657694450352949666726338607645486396011579512455168.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.7.0.1}{7} }^{2}{,}\,{\href{/padicField/3.4.0.1}{4} }^{2}$ | ${\href{/padicField/5.7.0.1}{7} }^{2}{,}\,{\href{/padicField/5.4.0.1}{4} }^{2}$ | ${\href{/padicField/7.6.0.1}{6} }^{2}{,}\,{\href{/padicField/7.5.0.1}{5} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}$ | ${\href{/padicField/13.14.0.1}{14} }{,}\,{\href{/padicField/13.8.0.1}{8} }$ | ${\href{/padicField/17.9.0.1}{9} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{3}$ | ${\href{/padicField/31.14.0.1}{14} }{,}\,{\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.5.0.1}{5} }^{2}$ | $18{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.10.0.1}{10} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}$ | $16{,}\,{\href{/padicField/53.2.0.1}{2} }^{3}$ | $18{,}\,{\href{/padicField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.11.2.22a135.2 | $x^{22} + 2 x^{21} + 2 x^{19} + 2 x^{17} + 2 x^{16} + 2 x^{15} + 2 x^{14} + 2 x^{13} + 4 x^{12} + 2 x^{11} + 4 x^{10} + 4 x^{8} + 2 x^{7} + 4 x^{6} + 4 x^{5} + 3 x^{4} + 4 x^{3} + 2 x^{2} + 6 x + 3$ | $2$ | $11$ | $22$ | 22T23 | not computed |
|
\(200601609583\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| Deg $4$ | $2$ | $2$ | $2$ | ||||
| Deg $16$ | $1$ | $16$ | $0$ | $C_{16}$ | $$[\ ]^{16}$$ |