Normalized defining polynomial
\( x^{22} + 13 x^{20} + 78 x^{18} + 280 x^{16} + 657 x^{14} + 1027 x^{12} + 1021 x^{10} + 513 x^{8} + \cdots - 27 \)
Invariants
| Degree: | $22$ |
| |
| Signature: | $[2, 10]$ |
| |
| Discriminant: |
\(1589600218290268559270131890388992\)
\(\medspace = 2^{22}\cdot 3\cdot 1831^{8}\)
|
| |
| Root discriminant: | \(32.30\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(3\), \(1831\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{3}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{47}a^{20}-\frac{2}{47}a^{18}+\frac{14}{47}a^{16}+\frac{23}{47}a^{14}-\frac{17}{47}a^{12}+\frac{13}{47}a^{10}-\frac{20}{47}a^{8}+\frac{14}{47}a^{6}-\frac{16}{47}a^{4}-\frac{12}{47}a^{2}+\frac{17}{47}$, $\frac{1}{141}a^{21}-\frac{2}{141}a^{19}-\frac{11}{47}a^{17}+\frac{70}{141}a^{15}+\frac{10}{47}a^{13}+\frac{13}{141}a^{11}-\frac{20}{141}a^{9}-\frac{11}{47}a^{7}-\frac{16}{141}a^{5}-\frac{59}{141}a^{3}+\frac{17}{141}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a^{2}+1$, $\frac{38}{47}a^{20}+\frac{488}{47}a^{18}+\frac{2835}{47}a^{16}+\frac{9616}{47}a^{14}+\frac{20598}{47}a^{12}+\frac{27801}{47}a^{10}+\frac{21048}{47}a^{8}+\frac{3634}{47}a^{6}-\frac{7846}{47}a^{4}-\frac{6284}{47}a^{2}-\frac{1328}{47}$, $\frac{3}{47}a^{20}+\frac{88}{47}a^{18}+\frac{747}{47}a^{16}+\frac{3218}{47}a^{14}+\frac{8127}{47}a^{12}+\frac{12400}{47}a^{10}+\frac{10421}{47}a^{8}+\frac{2345}{47}a^{6}-\frac{3620}{47}a^{4}-\frac{3044}{47}a^{2}-\frac{607}{47}$, $\frac{51}{47}a^{20}+\frac{603}{47}a^{18}+\frac{3299}{47}a^{16}+\frac{10714}{47}a^{14}+\frac{22351}{47}a^{12}+\frac{29803}{47}a^{10}+\frac{22621}{47}a^{8}+\frac{4051}{47}a^{6}-\frac{8477}{47}a^{4}-\frac{6910}{47}a^{2}-\frac{1342}{47}$, $\frac{12}{47}a^{20}+\frac{164}{47}a^{18}+\frac{1014}{47}a^{16}+\frac{3660}{47}a^{14}+\frac{8350}{47}a^{12}+\frac{12047}{47}a^{10}+\frac{9912}{47}a^{8}+\frac{2283}{47}a^{6}-\frac{3482}{47}a^{4}-\frac{3058}{47}a^{2}-\frac{595}{47}$, $\frac{21}{47}a^{20}+\frac{287}{47}a^{18}+\frac{1704}{47}a^{16}+\frac{5747}{47}a^{14}+\frac{11910}{47}a^{12}+\frac{15078}{47}a^{10}+\frac{10014}{47}a^{8}+\frac{341}{47}a^{6}-\frac{4566}{47}a^{4}-\frac{2790}{47}a^{2}-\frac{442}{47}$, $\frac{34}{141}a^{21}+\frac{355}{141}a^{19}+\frac{566}{47}a^{17}+\frac{4777}{141}a^{15}+\frac{2878}{47}a^{13}+\frac{10030}{141}a^{11}+\frac{6652}{141}a^{9}+\frac{284}{47}a^{7}-\frac{2518}{141}a^{5}-\frac{2006}{141}a^{3}-a^{2}-\frac{409}{141}a-1$, $\frac{5}{141}a^{21}+\frac{131}{141}a^{19}+\frac{368}{47}a^{17}+\frac{4862}{141}a^{15}+\frac{4280}{47}a^{13}+\frac{21074}{141}a^{11}+\frac{20204}{141}a^{9}+\frac{2530}{47}a^{7}-\frac{5015}{141}a^{5}-\frac{6781}{141}a^{3}-a^{2}-\frac{2171}{141}a-2$, $\frac{92}{141}a^{21}-\frac{64}{47}a^{20}+\frac{1085}{141}a^{19}-\frac{671}{47}a^{18}+\frac{1902}{47}a^{17}-\frac{3152}{47}a^{16}+\frac{17156}{141}a^{15}-\frac{8428}{47}a^{14}+\frac{10555}{47}a^{13}-\frac{13717}{47}a^{12}+\frac{35177}{141}a^{11}-\frac{13005}{47}a^{10}+\frac{19310}{141}a^{9}-\frac{5112}{47}a^{8}-\frac{730}{47}a^{7}+\frac{2582}{47}a^{6}-\frac{10073}{141}a^{5}+\frac{3891}{47}a^{4}-\frac{5710}{141}a^{3}+\frac{1567}{47}a^{2}-\frac{1256}{141}a+\frac{181}{47}$, $\frac{146}{141}a^{21}+\frac{51}{47}a^{20}+\frac{1541}{141}a^{19}+\frac{603}{47}a^{18}+\frac{2436}{47}a^{17}+\frac{3252}{47}a^{16}+\frac{19667}{141}a^{15}+\frac{10291}{47}a^{14}+\frac{10578}{47}a^{13}+\frac{20659}{47}a^{12}+\frac{28265}{141}a^{11}+\frac{26137}{47}a^{10}+\frac{7091}{141}a^{9}+\frac{18297}{47}a^{8}-\frac{3627}{47}a^{7}+\frac{2218}{47}a^{6}-\frac{10373}{141}a^{5}-\frac{7114}{47}a^{4}-\frac{2833}{141}a^{3}-\frac{5077}{47}a^{2}-\frac{338}{141}a-\frac{919}{47}$, $\frac{371}{141}a^{21}+\frac{267}{47}a^{20}+\frac{3770}{141}a^{19}+\frac{3273}{47}a^{18}+\frac{5742}{47}a^{17}+\frac{18120}{47}a^{16}+\frac{44582}{141}a^{15}+\frac{58452}{47}a^{14}+\frac{22980}{47}a^{13}+\frac{118789}{47}a^{12}+\frac{57698}{141}a^{11}+\frac{151239}{47}a^{10}+\frac{10628}{141}a^{9}+\frac{105392}{47}a^{8}-\frac{8217}{47}a^{7}+\frac{10506}{47}a^{6}-\frac{19190}{141}a^{5}-\frac{44128}{47}a^{4}-\frac{1726}{141}a^{3}-\frac{31216}{47}a^{2}+\frac{1231}{141}a-\frac{5801}{47}$
|
| |
| Regulator: | \( 109823350.649 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{10}\cdot 109823350.649 \cdot 1}{2\cdot\sqrt{1589600218290268559270131890388992}}\cr\approx \mathstrut & 0.528298541891 \end{aligned}\] (assuming GRH)
Galois group
$C_2^{11}.\PSL(2,11)$ (as 22T42):
| A non-solvable group of order 1351680 |
| The 112 conjugacy class representatives for $C_2^{11}.\PSL(2,11)$ |
| Character table for $C_2^{11}.\PSL(2,11)$ |
Intermediate fields
| 11.3.11239665258721.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 22 sibling: | data not computed |
| Degree 44 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $22$ | ${\href{/padicField/7.10.0.1}{10} }{,}\,{\href{/padicField/7.5.0.1}{5} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.11.0.1}{11} }^{2}$ | ${\href{/padicField/13.10.0.1}{10} }{,}\,{\href{/padicField/13.5.0.1}{5} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.10.0.1}{10} }{,}\,{\href{/padicField/17.5.0.1}{5} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.3.0.1}{3} }^{4}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.3.0.1}{3} }^{4}{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.12.0.1}{12} }{,}\,{\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.4.0.1}{4} }$ | $22$ | ${\href{/padicField/37.6.0.1}{6} }^{3}{,}\,{\href{/padicField/37.4.0.1}{4} }$ | ${\href{/padicField/41.5.0.1}{5} }^{4}{,}\,{\href{/padicField/41.2.0.1}{2} }$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }^{4}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{4}{,}\,{\href{/padicField/47.1.0.1}{1} }^{6}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{5}{,}\,{\href{/padicField/53.1.0.1}{1} }^{4}$ | ${\href{/padicField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.11.2.22a151.2 | $x^{22} + 2 x^{21} + 2 x^{20} + 2 x^{15} + 4 x^{13} + 4 x^{12} + 6 x^{11} + 2 x^{10} + 2 x^{9} + 2 x^{6} + 5 x^{4} + 2 x^{3} + 6 x^{2} + 2 x + 9$ | $2$ | $11$ | $22$ | 22T28 | not computed |
|
\(3\)
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 3.5.1.0a1.1 | $x^{5} + 2 x + 1$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | |
| 3.5.1.0a1.1 | $x^{5} + 2 x + 1$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | |
| 3.10.1.0a1.1 | $x^{10} + 2 x^{6} + 2 x^{5} + 2 x^{4} + x + 2$ | $1$ | $10$ | $0$ | $C_{10}$ | $$[\ ]^{10}$$ | |
|
\(1831\)
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | ||
| Deg $6$ | $2$ | $3$ | $3$ | ||||
| Deg $6$ | $2$ | $3$ | $3$ |