Label 22T42
Order \(1351680\)
n \(22\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $22$
Transitive number $t$ :  $42$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,8)(2,7)(3,14)(4,13)(5,10)(6,9)(15,20,16,19)(17,18)(21,22), (3,9,17,19,22,4,10,18,20,21)(5,14,16,11,7)(6,13,15,12,8)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
660:  $\PSL(2,11)$
1320:  22T13
675840:  22T39

Resolvents shown for degrees $\leq 47$


Degree 2: None

Degree 11: $\PSL(2,11)$

Low degree siblings

22T42, 44T433 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 112 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1351680=2^{13} \cdot 3 \cdot 5 \cdot 11$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.