Normalized defining polynomial
\( x^{22} + 9 x^{20} + 36 x^{18} + 79 x^{16} + 99 x^{14} + 68 x^{12} + 24 x^{10} + 3 x^{8} - 9 x^{6} + \cdots - 3 \)
Invariants
| Degree: | $22$ |
| |
| Signature: | $[2, 10]$ |
| |
| Discriminant: |
\(1589600218290268559270131890388992\)
\(\medspace = 2^{22}\cdot 3\cdot 1831^{8}\)
|
| |
| Root discriminant: | \(32.30\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(3\), \(1831\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{3}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{839}a^{20}+\frac{415}{839}a^{18}-\frac{113}{839}a^{16}+\frac{346}{839}a^{14}-\frac{377}{839}a^{12}-\frac{296}{839}a^{10}-\frac{175}{839}a^{8}+\frac{268}{839}a^{6}-\frac{271}{839}a^{4}-\frac{132}{839}a^{2}+\frac{93}{839}$, $\frac{1}{839}a^{21}+\frac{415}{839}a^{19}-\frac{113}{839}a^{17}+\frac{346}{839}a^{15}-\frac{377}{839}a^{13}-\frac{296}{839}a^{11}-\frac{175}{839}a^{9}+\frac{268}{839}a^{7}-\frac{271}{839}a^{5}-\frac{132}{839}a^{3}+\frac{93}{839}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a^{20}+8a^{18}+28a^{16}+51a^{14}+48a^{12}+20a^{10}+4a^{8}-a^{6}-8a^{4}-7a^{2}-4$, $\frac{334}{839}a^{20}+\frac{2692}{839}a^{18}+\frac{9242}{839}a^{16}+\frac{15723}{839}a^{14}+\frac{11678}{839}a^{12}+\frac{977}{839}a^{10}+\frac{280}{839}a^{8}+\frac{3095}{839}a^{6}-\frac{1580}{839}a^{4}-\frac{2138}{839}a^{2}-\frac{820}{839}$, $\frac{265}{839}a^{20}+\frac{1744}{839}a^{18}+\frac{4454}{839}a^{16}+\frac{3595}{839}a^{14}-\frac{3420}{839}a^{12}-\frac{5447}{839}a^{10}+\frac{1448}{839}a^{8}-\frac{295}{839}a^{6}-\frac{3856}{839}a^{4}+\frac{1936}{839}a^{2}+\frac{314}{839}$, $\frac{883}{839}a^{20}+\frac{7353}{839}a^{18}+\frac{26910}{839}a^{16}+\frac{52140}{839}a^{14}+\frac{53888}{839}a^{12}+\frac{26409}{839}a^{10}+\frac{5724}{839}a^{8}-\frac{793}{839}a^{6}-\frac{8568}{839}a^{4}-\frac{8325}{839}a^{2}-\frac{4298}{839}$, $\frac{1711}{839}a^{20}+\frac{14534}{839}a^{18}+\frac{54162}{839}a^{16}+\frac{107064}{839}a^{14}+\frac{112570}{839}a^{12}+\frac{53996}{839}a^{10}+\frac{7649}{839}a^{8}-\frac{2063}{839}a^{6}-\frac{13977}{839}a^{4}-\frac{16102}{839}a^{2}-\frac{8677}{839}$, $\frac{60}{839}a^{20}+\frac{569}{839}a^{18}+\frac{2449}{839}a^{16}+\frac{5658}{839}a^{14}+\frac{6745}{839}a^{12}+\frac{2376}{839}a^{10}-\frac{2110}{839}a^{8}-\frac{700}{839}a^{6}-\frac{319}{839}a^{4}-\frac{1208}{839}a^{2}-\frac{293}{839}$, $\frac{42}{839}a^{21}+\frac{1199}{839}a^{20}+\frac{650}{839}a^{19}+\frac{10126}{839}a^{18}+\frac{3644}{839}a^{17}+\frac{37347}{839}a^{16}+\frac{10337}{839}a^{15}+\frac{72542}{839}a^{14}+\frac{15209}{839}a^{13}+\frac{74030}{839}a^{12}+\frac{9382}{839}a^{11}+\frac{34392}{839}a^{10}-\frac{638}{839}a^{9}+\frac{7476}{839}a^{8}-\frac{1329}{839}a^{7}+\frac{1673}{839}a^{6}-\frac{475}{839}a^{5}-\frac{11143}{839}a^{4}-\frac{3027}{839}a^{3}-\frac{12282}{839}a^{2}-\frac{289}{839}a-\frac{5114}{839}$, $\frac{1604}{839}a^{21}+\frac{146}{839}a^{20}+\frac{13757}{839}a^{19}+\frac{1021}{839}a^{18}+\frac{51990}{839}a^{17}+\frac{2799}{839}a^{16}+\frac{105280}{839}a^{15}+\frac{2693}{839}a^{14}+\frac{115993}{839}a^{13}-\frac{1346}{839}a^{12}+\frac{61337}{839}a^{11}-\frac{1266}{839}a^{10}+\frac{7077}{839}a^{9}+\frac{8849}{839}a^{8}-\frac{13959}{839}a^{7}+\frac{12280}{839}a^{6}-\frac{23574}{839}a^{5}+\frac{706}{839}a^{4}-\frac{15402}{839}a^{3}-\frac{5848}{839}a^{2}-\frac{5204}{839}a-\frac{2363}{839}$, $\frac{951}{839}a^{21}-\frac{761}{839}a^{20}+\frac{7886}{839}a^{19}-\frac{6224}{839}a^{18}+\frac{28455}{839}a^{17}-\frac{22238}{839}a^{16}+\frac{53015}{839}a^{15}-\frac{41810}{839}a^{14}+\frac{48388}{839}a^{13}-\frac{41991}{839}a^{12}+\frac{12154}{839}a^{11}-\frac{22249}{839}a^{10}-\frac{7854}{839}a^{9}-\frac{10294}{839}a^{8}-\frac{6061}{839}a^{7}-\frac{5105}{839}a^{6}-\frac{11894}{839}a^{5}+\frac{4032}{839}a^{4}-\frac{11428}{839}a^{3}+\frac{3128}{839}a^{2}-\frac{3847}{839}a+\frac{1381}{839}$, $\frac{1510}{839}a^{21}-\frac{1182}{839}a^{20}+\frac{13341}{839}a^{19}-\frac{9783}{839}a^{18}+\frac{51705}{839}a^{17}-\frac{35073}{839}a^{16}+\frac{107155}{839}a^{15}-\frac{64982}{839}a^{14}+\frac{119549}{839}a^{13}-\frac{60303}{839}a^{12}+\frac{62313}{839}a^{11}-\frac{21805}{839}a^{10}+\frac{10942}{839}a^{9}-\frac{3739}{839}a^{8}+\frac{2799}{839}a^{7}-\frac{2990}{839}a^{6}-\frac{11524}{839}a^{5}+\frac{9892}{839}a^{4}-\frac{20613}{839}a^{3}+\frac{9199}{839}a^{2}-\frac{8073}{839}a+\frac{1661}{839}$, $\frac{2401}{839}a^{21}-\frac{1759}{839}a^{20}+\frac{20658}{839}a^{19}-\frac{14318}{839}a^{18}+\frac{77711}{839}a^{17}-\frac{50416}{839}a^{16}+\frac{154512}{839}a^{15}-\frac{90951}{839}a^{14}+\frac{161192}{839}a^{13}-\frac{80211}{839}a^{12}+\frac{72091}{839}a^{11}-\frac{23847}{839}a^{10}+\frac{5198}{839}a^{9}-\frac{88}{839}a^{8}-\frac{2562}{839}a^{7}+\frac{945}{839}a^{6}-\frac{23099}{839}a^{5}+\frac{18595}{839}a^{4}-\frac{29994}{839}a^{3}+\frac{14048}{839}a^{2}-\frac{10788}{839}a+\frac{3374}{839}$
|
| |
| Regulator: | \( 74452581.4489 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{10}\cdot 74452581.4489 \cdot 1}{2\cdot\sqrt{1589600218290268559270131890388992}}\cr\approx \mathstrut & 0.358149610143 \end{aligned}\] (assuming GRH)
Galois group
$C_2^{11}.\PSL(2,11)$ (as 22T42):
| A non-solvable group of order 1351680 |
| The 112 conjugacy class representatives for $C_2^{11}.\PSL(2,11)$ |
| Character table for $C_2^{11}.\PSL(2,11)$ |
Intermediate fields
| 11.3.11239665258721.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 22 sibling: | data not computed |
| Degree 44 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $22$ | ${\href{/padicField/7.5.0.1}{5} }^{4}{,}\,{\href{/padicField/7.2.0.1}{2} }$ | ${\href{/padicField/11.11.0.1}{11} }^{2}$ | ${\href{/padicField/13.10.0.1}{10} }{,}\,{\href{/padicField/13.5.0.1}{5} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.10.0.1}{10} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.3.0.1}{3} }^{6}{,}\,{\href{/padicField/23.1.0.1}{1} }^{4}$ | ${\href{/padicField/29.12.0.1}{12} }{,}\,{\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.4.0.1}{4} }$ | $22$ | ${\href{/padicField/37.12.0.1}{12} }{,}\,{\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.3.0.1}{3} }^{2}$ | ${\href{/padicField/41.10.0.1}{10} }{,}\,{\href{/padicField/41.5.0.1}{5} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }^{4}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{7}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{6}{,}\,{\href{/padicField/53.1.0.1}{1} }^{6}$ | ${\href{/padicField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.11.2.22a39.2 | $x^{22} + 2 x^{19} + 2 x^{17} + 2 x^{13} + 2 x^{11} + 2 x^{10} + 4 x^{8} + 2 x^{6} + x^{4} + 2 x^{2} + 7$ | $2$ | $11$ | $22$ | 22T28 | not computed |
|
\(3\)
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 3.10.1.0a1.1 | $x^{10} + 2 x^{6} + 2 x^{5} + 2 x^{4} + x + 2$ | $1$ | $10$ | $0$ | $C_{10}$ | $$[\ ]^{10}$$ | |
| 3.10.1.0a1.1 | $x^{10} + 2 x^{6} + 2 x^{5} + 2 x^{4} + x + 2$ | $1$ | $10$ | $0$ | $C_{10}$ | $$[\ ]^{10}$$ | |
|
\(1831\)
| Deg $4$ | $2$ | $2$ | $2$ | |||
| Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | ||
| Deg $6$ | $2$ | $3$ | $3$ | ||||
| Deg $6$ | $2$ | $3$ | $3$ |