Normalized defining polynomial
\( x^{22} - 11 x^{21} + 75 x^{20} - 365 x^{19} + 1409 x^{18} - 4473 x^{17} + 12052 x^{16} - 27974 x^{15} + \cdots + 163 \)
Invariants
| Degree: | $22$ |
| |
| Signature: | $[2, 10]$ |
| |
| Discriminant: |
\(12816596924190768698410425412337\)
\(\medspace = 31\cdot 43^{2}\cdot 547^{2}\cdot 632447\cdot 34374601^{2}\)
|
| |
| Root discriminant: | \(25.94\) |
| |
| Galois root discriminant: | $31^{1/2}43^{1/2}547^{1/2}632447^{1/2}34374601^{1/2}\approx 3981435085.1469045$ | ||
| Ramified primes: |
\(31\), \(43\), \(547\), \(632447\), \(34374601\)
|
| |
| Discriminant root field: | $\Q(\sqrt{19605857}$) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a^{2}-a+2$, $a^{20}-10a^{19}+63a^{18}-282a^{17}+1001a^{16}-2908a^{15}+7142a^{14}-15016a^{13}+27386a^{12}-43520a^{11}+60555a^{10}-73717a^{9}+78443a^{8}-72504a^{7}+57760a^{6}-39051a^{5}+21940a^{4}-9870a^{3}+3347a^{2}-760a+83$, $3a^{18}-27a^{17}+155a^{16}-628a^{15}+2014a^{14}-5250a^{13}+11504a^{12}-21392a^{11}+34199a^{10}-47069a^{9}+55963a^{8}-57176a^{7}+49950a^{6}-36756a^{5}+22342a^{4}-10802a^{3}+3901a^{2}-931a+101$, $7a^{20}-70a^{19}+440a^{18}-1965a^{17}+6958a^{16}-20168a^{15}+49434a^{14}-103768a^{13}+189038a^{12}-300226a^{11}+417745a^{10}-508859a^{9}+542185a^{8}-502116a^{7}+401084a^{6}-272089a^{5}+153510a^{4}-69401a^{3}+23653a^{2}-5392a+581$, $a^{20}-10a^{19}+71a^{18}-354a^{17}+1416a^{16}-4596a^{15}+12583a^{14}-29275a^{13}+58821a^{12}-102351a^{11}+155278a^{10}-205078a^{9}+235936a^{8}-234865a^{7}+201041a^{6}-145668a^{5}+87605a^{4}-42111a^{3}+15225a^{2}-3669a+412$, $8a^{20}-80a^{19}+503a^{18}-2247a^{17}+7959a^{16}-23076a^{15}+56576a^{14}-118784a^{13}+216424a^{12}-343746a^{11}+478300a^{10}-582576a^{9}+620628a^{8}-574620a^{7}+458844a^{6}-311140a^{5}+175450a^{4}-79271a^{3}+26999a^{2}-6151a+662$, $8a^{20}-80a^{19}+499a^{18}-2211a^{17}+7752a^{16}-22236a^{15}+53876a^{14}-111728a^{13}+200914a^{12}-314802a^{11}+431831a^{10}-518311a^{9}+543786a^{8}-495606a^{7}+389289a^{6}-259507a^{5}+143726a^{4}-63733a^{3}+21292a^{2}-4759a+506$, $13a^{20}-130a^{19}+816a^{18}-3639a^{17}+12863a^{16}-37216a^{15}+91041a^{14}-190721a^{13}+346718a^{12}-549493a^{11}+762966a^{10}-927441a^{9}+986171a^{8}-911523a^{7}+726805a^{6}-492269a^{5}+277387a^{4}-125312a^{3}+42723a^{2}-9759a+1057$, $a^{21}-13a^{20}+96a^{19}-501a^{18}+2030a^{17}-6704a^{16}+18566a^{15}-43944a^{14}+89943a^{13}-160513a^{12}+250834a^{11}-344062a^{10}+413923a^{9}-435670a^{8}+398668a^{7}-314316a^{6}+210179a^{5}-116566a^{4}+51584a^{3}-17110a^{2}+3748a-386$, $a^{21}-13a^{20}+93a^{19}-471a^{18}+1849a^{17}-5928a^{16}+15960a^{15}-36807a^{14}+73559a^{13}-128485a^{12}+196997a^{11}-265789a^{10}+315374a^{9}-328285a^{8}+298038a^{7}-233859a^{6}+156314a^{5}-87035a^{4}+38980a^{3}-13190a^{2}+3012a-329$, $a^{21}-12a^{20}+83a^{19}-408a^{18}+1566a^{17}-4920a^{16}+13016a^{15}-29539a^{14}+58180a^{13}-100265a^{12}+151837a^{11}-202543a^{10}+237823a^{9}-245235a^{8}+220727a^{7}-171923a^{6}+114161a^{5}-63270a^{4}+28234a^{3}-9562a^{2}+2190a-246$
|
| |
| Regulator: | \( 3786540.2671 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{10}\cdot 3786540.2671 \cdot 1}{2\cdot\sqrt{12816596924190768698410425412337}}\cr\approx \mathstrut & 0.20285461653 \end{aligned}\] (assuming GRH)
Galois group
$C_2^{10}.(C_2\times S_{11})$ (as 22T53):
| A non-solvable group of order 81749606400 |
| The 752 conjugacy class representatives for $C_2^{10}.(C_2\times S_{11})$ |
| Character table for $C_2^{10}.(C_2\times S_{11})$ |
Intermediate fields
| 11.7.808524990121.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 22 sibling: | data not computed |
| Degree 44 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.11.0.1}{11} }^{2}$ | $22$ | $22$ | $22$ | $18{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | ${\href{/padicField/13.7.0.1}{7} }^{2}{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.10.0.1}{10} }{,}\,{\href{/padicField/17.6.0.1}{6} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.14.0.1}{14} }{,}\,{\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.11.0.1}{11} }^{2}$ | R | ${\href{/padicField/37.11.0.1}{11} }^{2}$ | $20{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/47.4.0.1}{4} }^{4}{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.12.0.1}{12} }{,}\,{\href{/padicField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(31\)
| 31.1.2.1a1.1 | $x^{2} + 31$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 31.5.1.0a1.1 | $x^{5} + 7 x + 28$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | |
| 31.5.1.0a1.1 | $x^{5} + 7 x + 28$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | |
| 31.10.1.0a1.1 | $x^{10} + 30 x^{5} + 26 x^{4} + 13 x^{3} + 13 x^{2} + 13 x + 3$ | $1$ | $10$ | $0$ | $C_{10}$ | $$[\ ]^{10}$$ | |
|
\(43\)
| 43.1.2.1a1.1 | $x^{2} + 43$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 43.1.2.1a1.1 | $x^{2} + 43$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 43.4.1.0a1.1 | $x^{4} + 5 x^{2} + 42 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 43.7.1.0a1.1 | $x^{7} + 42 x^{2} + 7 x + 40$ | $1$ | $7$ | $0$ | $C_7$ | $$[\ ]^{7}$$ | |
| 43.7.1.0a1.1 | $x^{7} + 42 x^{2} + 7 x + 40$ | $1$ | $7$ | $0$ | $C_7$ | $$[\ ]^{7}$$ | |
|
\(547\)
| $\Q_{547}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{547}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | ||
| Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | ||
| Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | ||
|
\(632447\)
| $\Q_{632447}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{632447}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | ||
| Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | ||
| Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | ||
|
\(34374601\)
| $\Q_{34374601}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{34374601}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $4$ | $2$ | $2$ | $2$ | ||||
| Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | ||
| Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | ||
| Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ |