Properties

Label 22.14.719...104.6
Degree $22$
Signature $[14, 4]$
Discriminant $7.198\times 10^{33}$
Root discriminant \(34.59\)
Ramified primes $2,23$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2^{10}:C_{11}$ (as 22T23)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^22 - 7*x^20 - 7*x^18 + 97*x^16 - 67*x^14 - 338*x^12 + 512*x^10 + 14*x^8 - 362*x^6 + 166*x^4 - 9*x^2 - 1)
 
Copy content gp:K = bnfinit(y^22 - 7*y^20 - 7*y^18 + 97*y^16 - 67*y^14 - 338*y^12 + 512*y^10 + 14*y^8 - 362*y^6 + 166*y^4 - 9*y^2 - 1, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^22 - 7*x^20 - 7*x^18 + 97*x^16 - 67*x^14 - 338*x^12 + 512*x^10 + 14*x^8 - 362*x^6 + 166*x^4 - 9*x^2 - 1);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^22 - 7*x^20 - 7*x^18 + 97*x^16 - 67*x^14 - 338*x^12 + 512*x^10 + 14*x^8 - 362*x^6 + 166*x^4 - 9*x^2 - 1)
 

\( x^{22} - 7 x^{20} - 7 x^{18} + 97 x^{16} - 67 x^{14} - 338 x^{12} + 512 x^{10} + 14 x^{8} - 362 x^{6} + \cdots - 1 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $22$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[14, 4]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(7198079267989980836471065337135104\) \(\medspace = 2^{22}\cdot 23^{20}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(34.59\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(23\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_2$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{23}a^{12}-\frac{8}{23}a^{10}-\frac{4}{23}a^{8}+\frac{2}{23}a^{6}-\frac{2}{23}a^{4}-\frac{2}{23}a^{2}+\frac{3}{23}$, $\frac{1}{23}a^{13}-\frac{8}{23}a^{11}-\frac{4}{23}a^{9}+\frac{2}{23}a^{7}-\frac{2}{23}a^{5}-\frac{2}{23}a^{3}+\frac{3}{23}a$, $\frac{1}{23}a^{14}+\frac{1}{23}a^{10}-\frac{7}{23}a^{8}-\frac{9}{23}a^{6}+\frac{5}{23}a^{4}+\frac{10}{23}a^{2}+\frac{1}{23}$, $\frac{1}{23}a^{15}+\frac{1}{23}a^{11}-\frac{7}{23}a^{9}-\frac{9}{23}a^{7}+\frac{5}{23}a^{5}+\frac{10}{23}a^{3}+\frac{1}{23}a$, $\frac{1}{23}a^{16}+\frac{1}{23}a^{10}-\frac{5}{23}a^{8}+\frac{3}{23}a^{6}-\frac{11}{23}a^{4}+\frac{3}{23}a^{2}-\frac{3}{23}$, $\frac{1}{23}a^{17}+\frac{1}{23}a^{11}-\frac{5}{23}a^{9}+\frac{3}{23}a^{7}-\frac{11}{23}a^{5}+\frac{3}{23}a^{3}-\frac{3}{23}a$, $\frac{1}{23}a^{18}+\frac{3}{23}a^{10}+\frac{7}{23}a^{8}+\frac{10}{23}a^{6}+\frac{5}{23}a^{4}-\frac{1}{23}a^{2}-\frac{3}{23}$, $\frac{1}{23}a^{19}+\frac{3}{23}a^{11}+\frac{7}{23}a^{9}+\frac{10}{23}a^{7}+\frac{5}{23}a^{5}-\frac{1}{23}a^{3}-\frac{3}{23}a$, $\frac{1}{1081}a^{20}+\frac{18}{1081}a^{18}+\frac{20}{1081}a^{16}-\frac{14}{1081}a^{14}+\frac{6}{1081}a^{12}-\frac{3}{23}a^{10}-\frac{522}{1081}a^{8}+\frac{124}{1081}a^{6}+\frac{23}{47}a^{4}-\frac{521}{1081}a^{2}+\frac{502}{1081}$, $\frac{1}{1081}a^{21}+\frac{18}{1081}a^{19}+\frac{20}{1081}a^{17}-\frac{14}{1081}a^{15}+\frac{6}{1081}a^{13}-\frac{3}{23}a^{11}-\frac{522}{1081}a^{9}+\frac{124}{1081}a^{7}+\frac{23}{47}a^{5}-\frac{521}{1081}a^{3}+\frac{502}{1081}a$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $17$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $a$, $\frac{239}{1081}a^{20}-\frac{1244}{1081}a^{18}-\frac{4103}{1081}a^{16}+\frac{16911}{1081}a^{14}+\frac{17320}{1081}a^{12}-\frac{1371}{23}a^{10}-\frac{2370}{1081}a^{8}+\frac{53183}{1081}a^{6}-\frac{6485}{1081}a^{4}-\frac{6173}{1081}a^{2}-\frac{154}{1081}$, $\frac{614}{1081}a^{21}-\frac{4552}{1081}a^{19}-\frac{2807}{1081}a^{17}+\frac{62985}{1081}a^{15}-\frac{61693}{1081}a^{13}-\frac{4538}{23}a^{11}+\frac{16997}{47}a^{9}-\frac{35348}{1081}a^{7}-\frac{266078}{1081}a^{5}+\frac{137040}{1081}a^{3}-\frac{9633}{1081}a$, $\frac{686}{1081}a^{21}-\frac{4478}{1081}a^{19}-\frac{6631}{1081}a^{17}+\frac{61742}{1081}a^{15}-\frac{900}{47}a^{13}-\frac{4654}{23}a^{11}+\frac{254835}{1081}a^{9}+\frac{45020}{1081}a^{7}-\frac{178499}{1081}a^{5}+\frac{78237}{1081}a^{3}-\frac{476}{47}a$, $\frac{278}{1081}a^{20}-\frac{1717}{1081}a^{18}-\frac{3276}{1081}a^{16}+\frac{23791}{1081}a^{14}-\frac{306}{1081}a^{12}-\frac{1860}{23}a^{10}+\frac{3203}{47}a^{8}+\frac{37903}{1081}a^{6}-\frac{57764}{1081}a^{4}+\frac{15620}{1081}a^{2}+\frac{436}{1081}$, $\frac{467}{1081}a^{21}-\frac{3015}{1081}a^{19}-\frac{4760}{1081}a^{17}+\frac{41872}{1081}a^{15}-\frac{10734}{1081}a^{13}-\frac{3236}{23}a^{11}+\frac{7067}{47}a^{9}+\frac{50482}{1081}a^{7}-\frac{125244}{1081}a^{5}+\frac{42406}{1081}a^{3}-\frac{96}{1081}a$, $\frac{427}{1081}a^{21}-\frac{2560}{1081}a^{19}-\frac{5513}{1081}a^{17}+\frac{35617}{1081}a^{15}+\frac{6416}{1081}a^{13}-\frac{2856}{23}a^{11}+\frac{3753}{47}a^{9}+\frac{78939}{1081}a^{7}-\frac{72614}{1081}a^{5}+\frac{6846}{1081}a^{3}+\frac{3136}{1081}a$, $\frac{220}{1081}a^{20}-\frac{1398}{1081}a^{18}-\frac{2321}{1081}a^{16}+\frac{19198}{1081}a^{14}-\frac{4320}{1081}a^{12}-\frac{1459}{23}a^{10}+\frac{75416}{1081}a^{8}+\frac{20653}{1081}a^{6}-\frac{59729}{1081}a^{4}+\frac{18155}{1081}a^{2}+\frac{695}{1081}$, $\frac{468}{1081}a^{20}-\frac{2997}{1081}a^{18}-\frac{4975}{1081}a^{16}+\frac{41905}{1081}a^{14}-\frac{7532}{1081}a^{12}-\frac{3304}{23}a^{10}+\frac{149000}{1081}a^{8}+\frac{66680}{1081}a^{6}-\frac{115315}{1081}a^{4}+\frac{29853}{1081}a^{2}-\frac{64}{1081}$, $\frac{213}{1081}a^{21}-\frac{1524}{1081}a^{19}-\frac{1333}{1081}a^{17}+\frac{21317}{1081}a^{15}-\frac{16488}{1081}a^{13}-\frac{1607}{23}a^{11}+\frac{118597}{1081}a^{9}+\frac{6672}{1081}a^{7}-\frac{90128}{1081}a^{5}+\frac{37218}{1081}a^{3}+\frac{518}{1081}a$, $a+1$, $\frac{241}{1081}a^{21}-\frac{1}{1081}a^{20}-\frac{1772}{1081}a^{19}+\frac{76}{1081}a^{18}-\frac{1102}{1081}a^{17}-\frac{255}{1081}a^{16}+\frac{24074}{1081}a^{15}-\frac{75}{47}a^{14}-\frac{24498}{1081}a^{13}+\frac{3049}{1081}a^{12}-\frac{1644}{23}a^{11}+\frac{229}{23}a^{10}+\frac{155352}{1081}a^{9}-\frac{9583}{1081}a^{8}-\frac{34412}{1081}a^{7}-\frac{18125}{1081}a^{6}-\frac{103892}{1081}a^{5}+\frac{8260}{1081}a^{4}+\frac{69160}{1081}a^{3}+\frac{7571}{1081}a^{2}-\frac{4649}{1081}a-\frac{220}{1081}$, $\frac{220}{1081}a^{20}-\frac{1398}{1081}a^{18}-\frac{2321}{1081}a^{16}+\frac{19198}{1081}a^{14}-\frac{4320}{1081}a^{12}-\frac{1459}{23}a^{10}+\frac{75416}{1081}a^{8}+\frac{20653}{1081}a^{6}-\frac{59729}{1081}a^{4}+\frac{18155}{1081}a^{2}+a+\frac{695}{1081}$, $\frac{573}{1081}a^{21}-\frac{459}{1081}a^{20}-\frac{3551}{1081}a^{19}+\frac{2642}{1081}a^{18}-\frac{6635}{1081}a^{17}+\frac{6424}{1081}a^{16}+\frac{48942}{1081}a^{15}-\frac{36109}{1081}a^{14}-\frac{2249}{1081}a^{13}-\frac{13000}{1081}a^{12}-\frac{3776}{23}a^{11}+\frac{2830}{23}a^{10}+\frac{157170}{1081}a^{9}-\frac{73046}{1081}a^{8}+\frac{67527}{1081}a^{7}-\frac{73836}{1081}a^{6}-\frac{5104}{47}a^{5}+\frac{66214}{1081}a^{4}+\frac{38833}{1081}a^{3}-\frac{11982}{1081}a^{2}-\frac{5728}{1081}a-\frac{541}{1081}$, $\frac{695}{1081}a^{21}+\frac{319}{1081}a^{20}-\frac{4645}{1081}a^{19}-\frac{63}{47}a^{18}-\frac{6263}{1081}a^{17}-\frac{6733}{1081}a^{16}+\frac{65094}{1081}a^{15}+\frac{19739}{1081}a^{14}-\frac{27367}{1081}a^{13}+\frac{40830}{1081}a^{12}-\frac{5090}{23}a^{11}-\frac{1732}{23}a^{10}+\frac{287267}{1081}a^{9}-\frac{72095}{1081}a^{8}+\frac{3702}{47}a^{7}+\frac{108270}{1081}a^{6}-\frac{230937}{1081}a^{5}+\frac{40253}{1081}a^{4}+\frac{55641}{1081}a^{3}-\frac{40615}{1081}a^{2}+\frac{11900}{1081}a-\frac{1213}{1081}$, $\frac{733}{1081}a^{21}+\frac{41}{1081}a^{20}-\frac{4619}{1081}a^{19}-\frac{531}{1081}a^{18}-\frac{8276}{1081}a^{17}+\frac{867}{1081}a^{16}+\frac{64891}{1081}a^{15}+\frac{8638}{1081}a^{14}-\frac{5143}{1081}a^{13}-\frac{17473}{1081}a^{12}-\frac{5224}{23}a^{11}-\frac{786}{23}a^{10}+\frac{209104}{1081}a^{9}+\frac{72081}{1081}a^{8}+\frac{134367}{1081}a^{7}+\frac{19043}{1081}a^{6}-\frac{169757}{1081}a^{5}-\frac{49610}{1081}a^{4}+\frac{19910}{1081}a^{3}+\frac{2750}{1081}a^{2}+\frac{2729}{1081}a-\frac{239}{1081}$, $\frac{1119}{1081}a^{21}-\frac{964}{1081}a^{20}-\frac{6648}{1081}a^{19}+\frac{5349}{1081}a^{18}-\frac{14656}{1081}a^{17}+\frac{14607}{1081}a^{16}+\frac{91870}{1081}a^{15}-\frac{72796}{1081}a^{14}+\frac{18746}{1081}a^{13}-\frac{42773}{1081}a^{12}-\frac{7294}{23}a^{11}+250a^{10}+\frac{223342}{1081}a^{9}-\frac{93598}{1081}a^{8}+\frac{194263}{1081}a^{7}-\frac{173539}{1081}a^{6}-\frac{192761}{1081}a^{5}+\frac{93759}{1081}a^{4}+\frac{24006}{1081}a^{3}-\frac{4510}{1081}a^{2}+\frac{5023}{1081}a-\frac{204}{1081}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1121614550.16 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{14}\cdot(2\pi)^{4}\cdot 1121614550.16 \cdot 1}{2\cdot\sqrt{7198079267989980836471065337135104}}\cr\approx \mathstrut & 0.168789232782 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^22 - 7*x^20 - 7*x^18 + 97*x^16 - 67*x^14 - 338*x^12 + 512*x^10 + 14*x^8 - 362*x^6 + 166*x^4 - 9*x^2 - 1) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^22 - 7*x^20 - 7*x^18 + 97*x^16 - 67*x^14 - 338*x^12 + 512*x^10 + 14*x^8 - 362*x^6 + 166*x^4 - 9*x^2 - 1, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^22 - 7*x^20 - 7*x^18 + 97*x^16 - 67*x^14 - 338*x^12 + 512*x^10 + 14*x^8 - 362*x^6 + 166*x^4 - 9*x^2 - 1); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^22 - 7*x^20 - 7*x^18 + 97*x^16 - 67*x^14 - 338*x^12 + 512*x^10 + 14*x^8 - 362*x^6 + 166*x^4 - 9*x^2 - 1); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^{10}:C_{11}$ (as 22T23):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 11264
The 104 conjugacy class representatives for $C_2^{10}:C_{11}$
Character table for $C_2^{10}:C_{11}$

Intermediate fields

\(\Q(\zeta_{23})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 22 siblings: data not computed
Degree 44 siblings: data not computed
Minimal sibling: 22.10.7198079267989980836471065337135104.11

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.11.0.1}{11} }^{2}$ ${\href{/padicField/5.11.0.1}{11} }^{2}$ ${\href{/padicField/7.11.0.1}{11} }^{2}$ ${\href{/padicField/11.11.0.1}{11} }^{2}$ ${\href{/padicField/13.11.0.1}{11} }^{2}$ ${\href{/padicField/17.11.0.1}{11} }^{2}$ ${\href{/padicField/19.11.0.1}{11} }^{2}$ R ${\href{/padicField/29.11.0.1}{11} }^{2}$ ${\href{/padicField/31.11.0.1}{11} }^{2}$ ${\href{/padicField/37.11.0.1}{11} }^{2}$ ${\href{/padicField/41.11.0.1}{11} }^{2}$ ${\href{/padicField/43.11.0.1}{11} }^{2}$ ${\href{/padicField/47.2.0.1}{2} }^{6}{,}\,{\href{/padicField/47.1.0.1}{1} }^{10}$ ${\href{/padicField/53.11.0.1}{11} }^{2}$ ${\href{/padicField/59.11.0.1}{11} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.11.2.22a49.2$x^{22} + 2 x^{19} + 2 x^{18} + 2 x^{16} + 2 x^{14} + 2 x^{13} + 4 x^{11} + 2 x^{10} + 2 x^{9} + 2 x^{8} + 4 x^{7} + 4 x^{5} + x^{4} + 6 x^{3} + 4 x^{2} + 5$$2$$11$$22$not computednot computed
\(23\) Copy content Toggle raw display 23.1.11.10a1.1$x^{11} + 23$$11$$1$$10$$C_{11}$$$[\ ]_{11}$$
23.1.11.10a1.1$x^{11} + 23$$11$$1$$10$$C_{11}$$$[\ ]_{11}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)