Normalized defining polynomial
\( x^{22} - 7 x^{20} - 7 x^{18} + 97 x^{16} - 67 x^{14} - 338 x^{12} + 512 x^{10} + 14 x^{8} - 362 x^{6} + \cdots - 1 \)
Invariants
| Degree: | $22$ |
| |
| Signature: | $[14, 4]$ |
| |
| Discriminant: |
\(7198079267989980836471065337135104\)
\(\medspace = 2^{22}\cdot 23^{20}\)
|
| |
| Root discriminant: | \(34.59\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(23\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{23}a^{12}-\frac{8}{23}a^{10}-\frac{4}{23}a^{8}+\frac{2}{23}a^{6}-\frac{2}{23}a^{4}-\frac{2}{23}a^{2}+\frac{3}{23}$, $\frac{1}{23}a^{13}-\frac{8}{23}a^{11}-\frac{4}{23}a^{9}+\frac{2}{23}a^{7}-\frac{2}{23}a^{5}-\frac{2}{23}a^{3}+\frac{3}{23}a$, $\frac{1}{23}a^{14}+\frac{1}{23}a^{10}-\frac{7}{23}a^{8}-\frac{9}{23}a^{6}+\frac{5}{23}a^{4}+\frac{10}{23}a^{2}+\frac{1}{23}$, $\frac{1}{23}a^{15}+\frac{1}{23}a^{11}-\frac{7}{23}a^{9}-\frac{9}{23}a^{7}+\frac{5}{23}a^{5}+\frac{10}{23}a^{3}+\frac{1}{23}a$, $\frac{1}{23}a^{16}+\frac{1}{23}a^{10}-\frac{5}{23}a^{8}+\frac{3}{23}a^{6}-\frac{11}{23}a^{4}+\frac{3}{23}a^{2}-\frac{3}{23}$, $\frac{1}{23}a^{17}+\frac{1}{23}a^{11}-\frac{5}{23}a^{9}+\frac{3}{23}a^{7}-\frac{11}{23}a^{5}+\frac{3}{23}a^{3}-\frac{3}{23}a$, $\frac{1}{23}a^{18}+\frac{3}{23}a^{10}+\frac{7}{23}a^{8}+\frac{10}{23}a^{6}+\frac{5}{23}a^{4}-\frac{1}{23}a^{2}-\frac{3}{23}$, $\frac{1}{23}a^{19}+\frac{3}{23}a^{11}+\frac{7}{23}a^{9}+\frac{10}{23}a^{7}+\frac{5}{23}a^{5}-\frac{1}{23}a^{3}-\frac{3}{23}a$, $\frac{1}{1081}a^{20}+\frac{18}{1081}a^{18}+\frac{20}{1081}a^{16}-\frac{14}{1081}a^{14}+\frac{6}{1081}a^{12}-\frac{3}{23}a^{10}-\frac{522}{1081}a^{8}+\frac{124}{1081}a^{6}+\frac{23}{47}a^{4}-\frac{521}{1081}a^{2}+\frac{502}{1081}$, $\frac{1}{1081}a^{21}+\frac{18}{1081}a^{19}+\frac{20}{1081}a^{17}-\frac{14}{1081}a^{15}+\frac{6}{1081}a^{13}-\frac{3}{23}a^{11}-\frac{522}{1081}a^{9}+\frac{124}{1081}a^{7}+\frac{23}{47}a^{5}-\frac{521}{1081}a^{3}+\frac{502}{1081}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $17$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a$, $\frac{239}{1081}a^{20}-\frac{1244}{1081}a^{18}-\frac{4103}{1081}a^{16}+\frac{16911}{1081}a^{14}+\frac{17320}{1081}a^{12}-\frac{1371}{23}a^{10}-\frac{2370}{1081}a^{8}+\frac{53183}{1081}a^{6}-\frac{6485}{1081}a^{4}-\frac{6173}{1081}a^{2}-\frac{154}{1081}$, $\frac{614}{1081}a^{21}-\frac{4552}{1081}a^{19}-\frac{2807}{1081}a^{17}+\frac{62985}{1081}a^{15}-\frac{61693}{1081}a^{13}-\frac{4538}{23}a^{11}+\frac{16997}{47}a^{9}-\frac{35348}{1081}a^{7}-\frac{266078}{1081}a^{5}+\frac{137040}{1081}a^{3}-\frac{9633}{1081}a$, $\frac{686}{1081}a^{21}-\frac{4478}{1081}a^{19}-\frac{6631}{1081}a^{17}+\frac{61742}{1081}a^{15}-\frac{900}{47}a^{13}-\frac{4654}{23}a^{11}+\frac{254835}{1081}a^{9}+\frac{45020}{1081}a^{7}-\frac{178499}{1081}a^{5}+\frac{78237}{1081}a^{3}-\frac{476}{47}a$, $\frac{278}{1081}a^{20}-\frac{1717}{1081}a^{18}-\frac{3276}{1081}a^{16}+\frac{23791}{1081}a^{14}-\frac{306}{1081}a^{12}-\frac{1860}{23}a^{10}+\frac{3203}{47}a^{8}+\frac{37903}{1081}a^{6}-\frac{57764}{1081}a^{4}+\frac{15620}{1081}a^{2}+\frac{436}{1081}$, $\frac{467}{1081}a^{21}-\frac{3015}{1081}a^{19}-\frac{4760}{1081}a^{17}+\frac{41872}{1081}a^{15}-\frac{10734}{1081}a^{13}-\frac{3236}{23}a^{11}+\frac{7067}{47}a^{9}+\frac{50482}{1081}a^{7}-\frac{125244}{1081}a^{5}+\frac{42406}{1081}a^{3}-\frac{96}{1081}a$, $\frac{427}{1081}a^{21}-\frac{2560}{1081}a^{19}-\frac{5513}{1081}a^{17}+\frac{35617}{1081}a^{15}+\frac{6416}{1081}a^{13}-\frac{2856}{23}a^{11}+\frac{3753}{47}a^{9}+\frac{78939}{1081}a^{7}-\frac{72614}{1081}a^{5}+\frac{6846}{1081}a^{3}+\frac{3136}{1081}a$, $\frac{220}{1081}a^{20}-\frac{1398}{1081}a^{18}-\frac{2321}{1081}a^{16}+\frac{19198}{1081}a^{14}-\frac{4320}{1081}a^{12}-\frac{1459}{23}a^{10}+\frac{75416}{1081}a^{8}+\frac{20653}{1081}a^{6}-\frac{59729}{1081}a^{4}+\frac{18155}{1081}a^{2}+\frac{695}{1081}$, $\frac{468}{1081}a^{20}-\frac{2997}{1081}a^{18}-\frac{4975}{1081}a^{16}+\frac{41905}{1081}a^{14}-\frac{7532}{1081}a^{12}-\frac{3304}{23}a^{10}+\frac{149000}{1081}a^{8}+\frac{66680}{1081}a^{6}-\frac{115315}{1081}a^{4}+\frac{29853}{1081}a^{2}-\frac{64}{1081}$, $\frac{213}{1081}a^{21}-\frac{1524}{1081}a^{19}-\frac{1333}{1081}a^{17}+\frac{21317}{1081}a^{15}-\frac{16488}{1081}a^{13}-\frac{1607}{23}a^{11}+\frac{118597}{1081}a^{9}+\frac{6672}{1081}a^{7}-\frac{90128}{1081}a^{5}+\frac{37218}{1081}a^{3}+\frac{518}{1081}a$, $a+1$, $\frac{241}{1081}a^{21}-\frac{1}{1081}a^{20}-\frac{1772}{1081}a^{19}+\frac{76}{1081}a^{18}-\frac{1102}{1081}a^{17}-\frac{255}{1081}a^{16}+\frac{24074}{1081}a^{15}-\frac{75}{47}a^{14}-\frac{24498}{1081}a^{13}+\frac{3049}{1081}a^{12}-\frac{1644}{23}a^{11}+\frac{229}{23}a^{10}+\frac{155352}{1081}a^{9}-\frac{9583}{1081}a^{8}-\frac{34412}{1081}a^{7}-\frac{18125}{1081}a^{6}-\frac{103892}{1081}a^{5}+\frac{8260}{1081}a^{4}+\frac{69160}{1081}a^{3}+\frac{7571}{1081}a^{2}-\frac{4649}{1081}a-\frac{220}{1081}$, $\frac{220}{1081}a^{20}-\frac{1398}{1081}a^{18}-\frac{2321}{1081}a^{16}+\frac{19198}{1081}a^{14}-\frac{4320}{1081}a^{12}-\frac{1459}{23}a^{10}+\frac{75416}{1081}a^{8}+\frac{20653}{1081}a^{6}-\frac{59729}{1081}a^{4}+\frac{18155}{1081}a^{2}+a+\frac{695}{1081}$, $\frac{573}{1081}a^{21}-\frac{459}{1081}a^{20}-\frac{3551}{1081}a^{19}+\frac{2642}{1081}a^{18}-\frac{6635}{1081}a^{17}+\frac{6424}{1081}a^{16}+\frac{48942}{1081}a^{15}-\frac{36109}{1081}a^{14}-\frac{2249}{1081}a^{13}-\frac{13000}{1081}a^{12}-\frac{3776}{23}a^{11}+\frac{2830}{23}a^{10}+\frac{157170}{1081}a^{9}-\frac{73046}{1081}a^{8}+\frac{67527}{1081}a^{7}-\frac{73836}{1081}a^{6}-\frac{5104}{47}a^{5}+\frac{66214}{1081}a^{4}+\frac{38833}{1081}a^{3}-\frac{11982}{1081}a^{2}-\frac{5728}{1081}a-\frac{541}{1081}$, $\frac{695}{1081}a^{21}+\frac{319}{1081}a^{20}-\frac{4645}{1081}a^{19}-\frac{63}{47}a^{18}-\frac{6263}{1081}a^{17}-\frac{6733}{1081}a^{16}+\frac{65094}{1081}a^{15}+\frac{19739}{1081}a^{14}-\frac{27367}{1081}a^{13}+\frac{40830}{1081}a^{12}-\frac{5090}{23}a^{11}-\frac{1732}{23}a^{10}+\frac{287267}{1081}a^{9}-\frac{72095}{1081}a^{8}+\frac{3702}{47}a^{7}+\frac{108270}{1081}a^{6}-\frac{230937}{1081}a^{5}+\frac{40253}{1081}a^{4}+\frac{55641}{1081}a^{3}-\frac{40615}{1081}a^{2}+\frac{11900}{1081}a-\frac{1213}{1081}$, $\frac{733}{1081}a^{21}+\frac{41}{1081}a^{20}-\frac{4619}{1081}a^{19}-\frac{531}{1081}a^{18}-\frac{8276}{1081}a^{17}+\frac{867}{1081}a^{16}+\frac{64891}{1081}a^{15}+\frac{8638}{1081}a^{14}-\frac{5143}{1081}a^{13}-\frac{17473}{1081}a^{12}-\frac{5224}{23}a^{11}-\frac{786}{23}a^{10}+\frac{209104}{1081}a^{9}+\frac{72081}{1081}a^{8}+\frac{134367}{1081}a^{7}+\frac{19043}{1081}a^{6}-\frac{169757}{1081}a^{5}-\frac{49610}{1081}a^{4}+\frac{19910}{1081}a^{3}+\frac{2750}{1081}a^{2}+\frac{2729}{1081}a-\frac{239}{1081}$, $\frac{1119}{1081}a^{21}-\frac{964}{1081}a^{20}-\frac{6648}{1081}a^{19}+\frac{5349}{1081}a^{18}-\frac{14656}{1081}a^{17}+\frac{14607}{1081}a^{16}+\frac{91870}{1081}a^{15}-\frac{72796}{1081}a^{14}+\frac{18746}{1081}a^{13}-\frac{42773}{1081}a^{12}-\frac{7294}{23}a^{11}+250a^{10}+\frac{223342}{1081}a^{9}-\frac{93598}{1081}a^{8}+\frac{194263}{1081}a^{7}-\frac{173539}{1081}a^{6}-\frac{192761}{1081}a^{5}+\frac{93759}{1081}a^{4}+\frac{24006}{1081}a^{3}-\frac{4510}{1081}a^{2}+\frac{5023}{1081}a-\frac{204}{1081}$
|
| |
| Regulator: | \( 1121614550.16 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{14}\cdot(2\pi)^{4}\cdot 1121614550.16 \cdot 1}{2\cdot\sqrt{7198079267989980836471065337135104}}\cr\approx \mathstrut & 0.168789232782 \end{aligned}\] (assuming GRH)
Galois group
$C_2^{10}:C_{11}$ (as 22T23):
| A solvable group of order 11264 |
| The 104 conjugacy class representatives for $C_2^{10}:C_{11}$ |
| Character table for $C_2^{10}:C_{11}$ |
Intermediate fields
| \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 22 siblings: | data not computed |
| Degree 44 siblings: | data not computed |
| Minimal sibling: | 22.10.7198079267989980836471065337135104.11 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.11.0.1}{11} }^{2}$ | ${\href{/padicField/5.11.0.1}{11} }^{2}$ | ${\href{/padicField/7.11.0.1}{11} }^{2}$ | ${\href{/padicField/11.11.0.1}{11} }^{2}$ | ${\href{/padicField/13.11.0.1}{11} }^{2}$ | ${\href{/padicField/17.11.0.1}{11} }^{2}$ | ${\href{/padicField/19.11.0.1}{11} }^{2}$ | R | ${\href{/padicField/29.11.0.1}{11} }^{2}$ | ${\href{/padicField/31.11.0.1}{11} }^{2}$ | ${\href{/padicField/37.11.0.1}{11} }^{2}$ | ${\href{/padicField/41.11.0.1}{11} }^{2}$ | ${\href{/padicField/43.11.0.1}{11} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{6}{,}\,{\href{/padicField/47.1.0.1}{1} }^{10}$ | ${\href{/padicField/53.11.0.1}{11} }^{2}$ | ${\href{/padicField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.11.2.22a49.2 | $x^{22} + 2 x^{19} + 2 x^{18} + 2 x^{16} + 2 x^{14} + 2 x^{13} + 4 x^{11} + 2 x^{10} + 2 x^{9} + 2 x^{8} + 4 x^{7} + 4 x^{5} + x^{4} + 6 x^{3} + 4 x^{2} + 5$ | $2$ | $11$ | $22$ | not computed | not computed |
|
\(23\)
| 23.1.11.10a1.1 | $x^{11} + 23$ | $11$ | $1$ | $10$ | $C_{11}$ | $$[\ ]_{11}$$ |
| 23.1.11.10a1.1 | $x^{11} + 23$ | $11$ | $1$ | $10$ | $C_{11}$ | $$[\ ]_{11}$$ |