Normalized defining polynomial
\( x^{22} - 5 x^{20} - 20 x^{18} + 90 x^{16} + 144 x^{14} - 445 x^{12} - 333 x^{10} + 572 x^{8} - 107 x^{6} + \cdots - 1 \)
Invariants
| Degree: | $22$ |
| |
| Signature: | $[14, 4]$ |
| |
| Discriminant: |
\(7198079267989980836471065337135104\)
\(\medspace = 2^{22}\cdot 23^{20}\)
|
| |
| Root discriminant: | \(34.59\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(23\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{6439}a^{18}+\frac{2282}{6439}a^{16}-\frac{1694}{6439}a^{14}-\frac{344}{6439}a^{12}-\frac{14}{6439}a^{10}+\frac{272}{6439}a^{8}+\frac{3010}{6439}a^{6}+\frac{1323}{6439}a^{4}+\frac{978}{6439}a^{2}+\frac{2098}{6439}$, $\frac{1}{6439}a^{19}+\frac{2282}{6439}a^{17}-\frac{1694}{6439}a^{15}-\frac{344}{6439}a^{13}-\frac{14}{6439}a^{11}+\frac{272}{6439}a^{9}+\frac{3010}{6439}a^{7}+\frac{1323}{6439}a^{5}+\frac{978}{6439}a^{3}+\frac{2098}{6439}a$, $\frac{1}{895021}a^{20}+\frac{69}{895021}a^{18}-\frac{254705}{895021}a^{16}-\frac{391799}{895021}a^{14}+\frac{278333}{895021}a^{12}-\frac{123282}{895021}a^{10}-\frac{116001}{895021}a^{8}+\frac{410215}{895021}a^{6}+\frac{202533}{895021}a^{4}-\frac{243394}{895021}a^{2}-\frac{355}{895021}$, $\frac{1}{895021}a^{21}+\frac{69}{895021}a^{19}-\frac{254705}{895021}a^{17}-\frac{391799}{895021}a^{15}+\frac{278333}{895021}a^{13}-\frac{123282}{895021}a^{11}-\frac{116001}{895021}a^{9}+\frac{410215}{895021}a^{7}+\frac{202533}{895021}a^{5}-\frac{243394}{895021}a^{3}-\frac{355}{895021}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $17$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1968056}{895021}a^{21}-\frac{9511122}{895021}a^{19}-\frac{40939885}{895021}a^{17}+\frac{170217093}{895021}a^{15}+\frac{311640807}{895021}a^{13}-\frac{822616256}{895021}a^{11}-\frac{791343919}{895021}a^{9}+\frac{988607140}{895021}a^{7}-\frac{49229524}{895021}a^{5}-\frac{101298249}{895021}a^{3}+\frac{12823018}{895021}a$, $a^{21}-5a^{19}-20a^{17}+90a^{15}+144a^{13}-445a^{11}-333a^{9}+572a^{7}-107a^{5}-50a^{3}+15a$, $\frac{3221154}{895021}a^{21}-\frac{15483194}{895021}a^{19}-\frac{67386766}{895021}a^{17}+\frac{276749602}{895021}a^{15}+\frac{516698631}{895021}a^{13}-\frac{1331309826}{895021}a^{11}-\frac{1324653839}{895021}a^{9}+\frac{1576768881}{895021}a^{7}-\frac{55366244}{895021}a^{5}-\frac{163932687}{895021}a^{3}+\frac{20044318}{895021}a$, $\frac{1253098}{895021}a^{20}-\frac{5972072}{895021}a^{18}-\frac{26446881}{895021}a^{16}+\frac{106532509}{895021}a^{14}+\frac{205057824}{895021}a^{12}-\frac{508693570}{895021}a^{10}-\frac{533309920}{895021}a^{8}+\frac{588161741}{895021}a^{6}-\frac{6136720}{895021}a^{4}-\frac{62634438}{895021}a^{2}+\frac{7221300}{895021}$, $\frac{22236}{895021}a^{21}-\frac{133577}{895021}a^{19}-\frac{357002}{895021}a^{17}+\frac{2552150}{895021}a^{15}+\frac{1768138}{895021}a^{13}-\frac{14985078}{895021}a^{11}-\frac{2515322}{895021}a^{9}+\frac{28933580}{895021}a^{7}-\frac{575222}{895021}a^{5}-\frac{7516961}{895021}a^{3}-\frac{1268901}{895021}a$, $\frac{417835}{895021}a^{20}-\frac{2011261}{895021}a^{18}-\frac{8746493}{895021}a^{16}+\frac{36043854}{895021}a^{14}+\frac{67183342}{895021}a^{12}-\frac{174533810}{895021}a^{10}-\frac{173903114}{895021}a^{8}+\frac{210839257}{895021}a^{6}+\frac{450926}{895021}a^{4}-\frac{22608355}{895021}a^{2}+\frac{1319450}{895021}$, $\frac{327519}{895021}a^{21}-\frac{1867135}{895021}a^{19}-\frac{5543508}{895021}a^{17}+\frac{34710048}{895021}a^{15}+\frac{29605589}{895021}a^{13}-\frac{190129236}{895021}a^{11}-\frac{32262023}{895021}a^{9}+\frac{315587066}{895021}a^{7}-\frac{95960107}{895021}a^{5}-\frac{42488861}{895021}a^{3}+\frac{171028}{19043}a$, $\frac{188295}{895021}a^{20}-\frac{1004389}{895021}a^{18}-\frac{3513155}{895021}a^{16}+\frac{18486707}{895021}a^{14}+\frac{22800061}{895021}a^{12}-\frac{97732006}{895021}a^{10}-\frac{45656916}{895021}a^{8}+\frac{149923683}{895021}a^{6}-\frac{25661985}{895021}a^{4}-\frac{19482824}{895021}a^{2}+\frac{2541990}{895021}$, $\frac{1006683}{895021}a^{21}-\frac{4828674}{895021}a^{19}-\frac{21086085}{895021}a^{17}+\frac{86193705}{895021}a^{15}+\frac{161770953}{895021}a^{13}-\frac{413053573}{895021}a^{11}-\frac{412701186}{895021}a^{9}+\frac{483994583}{895021}a^{7}-\frac{29257104}{895021}a^{5}-\frac{53660063}{895021}a^{3}+\frac{9435608}{895021}a$, $\frac{1050799}{895021}a^{21}-\frac{4902440}{895021}a^{19}-\frac{22682463}{895021}a^{17}+\frac{87113053}{895021}a^{15}+\frac{180989645}{895021}a^{13}-\frac{409346833}{895021}a^{11}-\frac{490786604}{895021}a^{9}+\frac{447721548}{895021}a^{7}+\frac{47112945}{895021}a^{5}-\frac{49030238}{895021}a^{3}+\frac{666604}{895021}a$, $\frac{1968056}{895021}a^{21}-\frac{9511122}{895021}a^{19}-\frac{40939885}{895021}a^{17}+\frac{170217093}{895021}a^{15}+\frac{311640807}{895021}a^{13}-\frac{822616256}{895021}a^{11}-\frac{791343919}{895021}a^{9}+\frac{988607140}{895021}a^{7}-\frac{49229524}{895021}a^{5}-\frac{101298249}{895021}a^{3}+\frac{12823018}{895021}a-1$, $\frac{1006683}{895021}a^{21}-\frac{312283}{895021}a^{20}-\frac{4828674}{895021}a^{19}+\frac{1442239}{895021}a^{18}-\frac{21086085}{895021}a^{17}+\frac{6780489}{895021}a^{16}+\frac{86193705}{895021}a^{15}-\frac{25459086}{895021}a^{14}+\frac{161770953}{895021}a^{13}-\frac{54265074}{895021}a^{12}-\frac{413053573}{895021}a^{11}+\frac{117143078}{895021}a^{10}-\frac{412701186}{895021}a^{9}+\frac{144758356}{895021}a^{8}+\frac{483994583}{895021}a^{7}-\frac{118100884}{895021}a^{6}-\frac{29257104}{895021}a^{5}-\frac{97078}{895021}a^{4}-\frac{53660063}{895021}a^{3}+\frac{10848978}{895021}a^{2}+\frac{9435608}{895021}a-\frac{2064803}{895021}$, $\frac{521141}{895021}a^{21}-\frac{2583469}{895021}a^{19}-\frac{10556397}{895021}a^{17}+\frac{46545688}{895021}a^{15}+\frac{77596454}{895021}a^{13}-\frac{230139607}{895021}a^{11}-\frac{188525031}{895021}a^{9}+\frac{295577330}{895021}a^{7}-\frac{26828507}{895021}a^{5}-\frac{26632272}{895021}a^{3}+\frac{300154}{895021}a+1$, $\frac{210531}{895021}a^{21}-\frac{229540}{895021}a^{20}-\frac{1137966}{895021}a^{19}+\frac{1006872}{895021}a^{18}-\frac{3870157}{895021}a^{17}+\frac{5233338}{895021}a^{16}+\frac{21038857}{895021}a^{15}-\frac{17557147}{895021}a^{14}+\frac{24568199}{895021}a^{13}-\frac{44383281}{895021}a^{12}-\frac{112717084}{895021}a^{11}+\frac{76801804}{895021}a^{10}-\frac{48172238}{895021}a^{9}+\frac{128246198}{895021}a^{8}+\frac{178857263}{895021}a^{7}-\frac{60915574}{895021}a^{6}-\frac{26237207}{895021}a^{5}-\frac{26112911}{895021}a^{4}-\frac{26999785}{895021}a^{3}+\frac{3125531}{895021}a^{2}+\frac{46130}{19043}a+\frac{1222540}{895021}$, $\frac{4830972}{895021}a^{21}-\frac{971689}{895021}a^{20}-\frac{23543208}{895021}a^{19}+\frac{101008}{19043}a^{18}-\frac{99586282}{895021}a^{17}+\frac{19969768}{895021}a^{16}+\frac{422104380}{895021}a^{15}-\frac{85137899}{895021}a^{14}+\frac{748842718}{895021}a^{13}-\frac{3181069}{19043}a^{12}-\frac{2053612669}{895021}a^{11}+\frac{414751084}{895021}a^{10}-\frac{1867030565}{895021}a^{9}+\frac{369761910}{895021}a^{8}+\frac{2519903902}{895021}a^{7}-\frac{510827888}{895021}a^{6}-\frac{201206678}{895021}a^{5}+\frac{49289027}{895021}a^{4}-\frac{257361971}{895021}a^{3}+\frac{51307936}{895021}a^{2}+\frac{36929665}{895021}a-\frac{8924945}{895021}$, $\frac{9870515}{895021}a^{21}+\frac{4107371}{895021}a^{20}-\frac{47940815}{895021}a^{19}-\frac{145518}{6533}a^{18}-\frac{4346862}{19043}a^{17}-\frac{85071559}{895021}a^{16}+\frac{859273087}{895021}a^{15}+\frac{357257540}{895021}a^{14}+\frac{1545088063}{895021}a^{13}+\frac{643856165}{895021}a^{12}-\frac{4173917452}{895021}a^{11}-\frac{1734222137}{895021}a^{10}-\frac{3891151467}{895021}a^{9}-\frac{1622282952}{895021}a^{8}+\frac{5099754234}{895021}a^{7}+\frac{2114623989}{895021}a^{6}-\frac{305544380}{895021}a^{5}-\frac{128108889}{895021}a^{4}-\frac{542939073}{895021}a^{3}-\frac{226244901}{895021}a^{2}+\frac{66624473}{895021}a+\frac{27933129}{895021}$, $\frac{784465}{895021}a^{21}-\frac{745354}{895021}a^{20}-\frac{4148499}{895021}a^{19}+\frac{3878396}{895021}a^{18}-\frac{14774461}{895021}a^{17}+\frac{14290001}{895021}a^{16}+\frac{76087709}{895021}a^{15}-\frac{70753902}{895021}a^{14}+\frac{97460659}{895021}a^{13}-\frac{96788931}{895021}a^{12}-\frac{398486317}{895021}a^{11}+\frac{364663046}{895021}a^{10}-\frac{201042995}{895021}a^{9}+\frac{206165137}{895021}a^{8}+\frac{598611487}{895021}a^{7}-\frac{526426323}{895021}a^{6}-\frac{99076930}{895021}a^{5}+\frac{95509181}{895021}a^{4}-\frac{78463021}{895021}a^{3}+\frac{65097216}{895021}a^{2}+\frac{7097097}{895021}a-\frac{9357766}{895021}$
|
| |
| Regulator: | \( 1094333914.95 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{14}\cdot(2\pi)^{4}\cdot 1094333914.95 \cdot 1}{2\cdot\sqrt{7198079267989980836471065337135104}}\cr\approx \mathstrut & 0.164683831790 \end{aligned}\] (assuming GRH)
Galois group
$C_2^{10}:C_{11}$ (as 22T23):
| A solvable group of order 11264 |
| The 104 conjugacy class representatives for $C_2^{10}:C_{11}$ |
| Character table for $C_2^{10}:C_{11}$ |
Intermediate fields
| \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 22 siblings: | data not computed |
| Degree 44 siblings: | data not computed |
| Minimal sibling: | 22.10.7198079267989980836471065337135104.11 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.11.0.1}{11} }^{2}$ | ${\href{/padicField/5.11.0.1}{11} }^{2}$ | ${\href{/padicField/7.11.0.1}{11} }^{2}$ | ${\href{/padicField/11.11.0.1}{11} }^{2}$ | ${\href{/padicField/13.11.0.1}{11} }^{2}$ | ${\href{/padicField/17.11.0.1}{11} }^{2}$ | ${\href{/padicField/19.11.0.1}{11} }^{2}$ | R | ${\href{/padicField/29.11.0.1}{11} }^{2}$ | ${\href{/padicField/31.11.0.1}{11} }^{2}$ | ${\href{/padicField/37.11.0.1}{11} }^{2}$ | ${\href{/padicField/41.11.0.1}{11} }^{2}$ | ${\href{/padicField/43.11.0.1}{11} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{6}{,}\,{\href{/padicField/47.1.0.1}{1} }^{10}$ | ${\href{/padicField/53.11.0.1}{11} }^{2}$ | ${\href{/padicField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.11.2.22a29.1 | $x^{22} + 2 x^{18} + 2 x^{16} + 2 x^{15} + 2 x^{14} + 4 x^{13} + 2 x^{12} + 2 x^{11} + 2 x^{9} + 4 x^{7} + 2 x^{6} + 4 x^{5} + 5 x^{4} + 4 x^{3} + 4 x^{2} + 2 x + 3$ | $2$ | $11$ | $22$ | not computed | not computed |
|
\(23\)
| 23.1.11.10a1.1 | $x^{11} + 23$ | $11$ | $1$ | $10$ | $C_{11}$ | $$[\ ]_{11}$$ |
| 23.1.11.10a1.1 | $x^{11} + 23$ | $11$ | $1$ | $10$ | $C_{11}$ | $$[\ ]_{11}$$ |