Normalized defining polynomial
\( x^{22} - 33 x^{20} - 44 x^{19} + 253 x^{18} + 660 x^{17} + 1177 x^{16} + 2992 x^{15} - 2266 x^{14} - 27214 x^{13} - 75812 x^{12} - 258772 x^{11} - 808192 x^{10} - 1679018 x^{9} - 2491038 x^{8} - 3007114 x^{7} - 3012009 x^{6} - 2244528 x^{5} - 1081113 x^{4} - 281710 x^{3} - 22011 x^{2} + 4268 x + 561 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6172475179135960522642404800603172634624=2^{28}\cdot 7^{10}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{5578044535729091588317439648946281145430037898017563} a^{21} + \frac{1707067107586535148012861177800460217410987901819546}{5578044535729091588317439648946281145430037898017563} a^{20} - \frac{2422110154599969750037406855871681429830173779936508}{5578044535729091588317439648946281145430037898017563} a^{19} - \frac{170714100034173709541340366183963932514220709080205}{429080348902237814485956896072790857340772146001351} a^{18} - \frac{2217800586920700010239584067521215563252249318592536}{5578044535729091588317439648946281145430037898017563} a^{17} - \frac{1294899239827512020868089490969041334824203266516512}{5578044535729091588317439648946281145430037898017563} a^{16} - \frac{576624344420494000933568849009121784438984762893015}{5578044535729091588317439648946281145430037898017563} a^{15} + \frac{1763950692427069325216478478428549355840168166800065}{5578044535729091588317439648946281145430037898017563} a^{14} + \frac{2337389891309061299302113669172483812727952483357951}{5578044535729091588317439648946281145430037898017563} a^{13} - \frac{497881709215559186449399195306192740705197254540860}{5578044535729091588317439648946281145430037898017563} a^{12} + \frac{1816387061245297189174659369705217236670383728330961}{5578044535729091588317439648946281145430037898017563} a^{11} + \frac{2396882691774368245052534386866977560142819246662603}{5578044535729091588317439648946281145430037898017563} a^{10} - \frac{45109095442783732459723989240878158970111529782292}{5578044535729091588317439648946281145430037898017563} a^{9} - \frac{272411195573137998177194778199334926153759845375032}{5578044535729091588317439648946281145430037898017563} a^{8} - \frac{1081190659206920856592033023289902694160633294973939}{5578044535729091588317439648946281145430037898017563} a^{7} + \frac{2002611757431717801230716845618837073547373543907233}{5578044535729091588317439648946281145430037898017563} a^{6} + \frac{367396458861193199363278807952765067470157085775445}{5578044535729091588317439648946281145430037898017563} a^{5} - \frac{1829466641865371788577919260554976785883224824746342}{5578044535729091588317439648946281145430037898017563} a^{4} + \frac{1333617274284022363988356159205995339430243646915797}{5578044535729091588317439648946281145430037898017563} a^{3} - \frac{2356587847874421574497574768374844862600721179924893}{5578044535729091588317439648946281145430037898017563} a^{2} + \frac{147758346883756899697206669137528003582661217866710}{429080348902237814485956896072790857340772146001351} a + \frac{1237553971794652787509830906059240915339415969745800}{5578044535729091588317439648946281145430037898017563}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10182928874900 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 44 conjugacy class representatives for t22n34 |
| Character table for t22n34 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ |
| 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ | |