Normalized defining polynomial
\( x^{22} - 33 x^{20} - 44 x^{19} + 253 x^{18} + 660 x^{17} + 1177 x^{16} + 2992 x^{15} - 2266 x^{14} + \cdots + 561 \)
Invariants
| Degree: | $22$ |
| |
| Signature: | $[14, 4]$ |
| |
| Discriminant: |
\(6172475179135960522642404800603172634624\)
\(\medspace = 2^{28}\cdot 7^{10}\cdot 11^{22}\)
|
| |
| Root discriminant: | \(64.37\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(7\), \(11\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{55\cdots 63}a^{21}+\frac{17\cdots 46}{55\cdots 63}a^{20}-\frac{24\cdots 08}{55\cdots 63}a^{19}-\frac{17\cdots 05}{42\cdots 51}a^{18}-\frac{22\cdots 36}{55\cdots 63}a^{17}-\frac{12\cdots 12}{55\cdots 63}a^{16}-\frac{57\cdots 15}{55\cdots 63}a^{15}+\frac{17\cdots 65}{55\cdots 63}a^{14}+\frac{23\cdots 51}{55\cdots 63}a^{13}-\frac{49\cdots 60}{55\cdots 63}a^{12}+\frac{18\cdots 61}{55\cdots 63}a^{11}+\frac{23\cdots 03}{55\cdots 63}a^{10}-\frac{45\cdots 92}{55\cdots 63}a^{9}-\frac{27\cdots 32}{55\cdots 63}a^{8}-\frac{10\cdots 39}{55\cdots 63}a^{7}+\frac{20\cdots 33}{55\cdots 63}a^{6}+\frac{36\cdots 45}{55\cdots 63}a^{5}-\frac{18\cdots 42}{55\cdots 63}a^{4}+\frac{13\cdots 97}{55\cdots 63}a^{3}-\frac{23\cdots 93}{55\cdots 63}a^{2}+\frac{14\cdots 10}{42\cdots 51}a+\frac{12\cdots 00}{55\cdots 63}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $17$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{23\cdots 60}{55\cdots 63}a^{21}-\frac{17\cdots 82}{55\cdots 63}a^{20}-\frac{76\cdots 18}{55\cdots 63}a^{19}-\frac{35\cdots 61}{42\cdots 51}a^{18}+\frac{63\cdots 63}{55\cdots 63}a^{17}+\frac{10\cdots 75}{55\cdots 63}a^{16}+\frac{19\cdots 46}{55\cdots 63}a^{15}+\frac{55\cdots 19}{55\cdots 63}a^{14}-\frac{96\cdots 80}{55\cdots 63}a^{13}-\frac{57\cdots 91}{55\cdots 63}a^{12}-\frac{13\cdots 58}{55\cdots 63}a^{11}-\frac{50\cdots 71}{55\cdots 63}a^{10}-\frac{15\cdots 85}{55\cdots 63}a^{9}-\frac{28\cdots 46}{55\cdots 63}a^{8}-\frac{37\cdots 96}{55\cdots 63}a^{7}-\frac{42\cdots 23}{55\cdots 63}a^{6}-\frac{38\cdots 02}{55\cdots 63}a^{5}-\frac{23\cdots 85}{55\cdots 63}a^{4}-\frac{75\cdots 48}{55\cdots 63}a^{3}-\frac{78\cdots 95}{55\cdots 63}a^{2}+\frac{87\cdots 96}{42\cdots 51}a+\frac{16\cdots 93}{55\cdots 63}$, $\frac{11\cdots 23}{55\cdots 63}a^{21}-\frac{92\cdots 40}{55\cdots 63}a^{20}-\frac{36\cdots 96}{55\cdots 63}a^{19}-\frac{15\cdots 48}{42\cdots 51}a^{18}+\frac{29\cdots 47}{55\cdots 63}a^{17}+\frac{49\cdots 96}{55\cdots 63}a^{16}+\frac{92\cdots 54}{55\cdots 63}a^{15}+\frac{26\cdots 29}{55\cdots 63}a^{14}-\frac{46\cdots 35}{55\cdots 63}a^{13}-\frac{26\cdots 21}{55\cdots 63}a^{12}-\frac{63\cdots 90}{55\cdots 63}a^{11}-\frac{23\cdots 32}{55\cdots 63}a^{10}-\frac{71\cdots 62}{55\cdots 63}a^{9}-\frac{13\cdots 49}{55\cdots 63}a^{8}-\frac{17\cdots 12}{55\cdots 63}a^{7}-\frac{19\cdots 20}{55\cdots 63}a^{6}-\frac{17\cdots 84}{55\cdots 63}a^{5}-\frac{10\cdots 89}{55\cdots 63}a^{4}-\frac{34\cdots 26}{55\cdots 63}a^{3}-\frac{34\cdots 54}{55\cdots 63}a^{2}+\frac{48\cdots 85}{42\cdots 51}a+\frac{92\cdots 65}{55\cdots 63}$, $\frac{26\cdots 67}{55\cdots 63}a^{21}-\frac{30\cdots 36}{55\cdots 63}a^{20}-\frac{82\cdots 41}{55\cdots 63}a^{19}-\frac{13\cdots 26}{42\cdots 51}a^{18}+\frac{68\cdots 20}{55\cdots 63}a^{17}+\frac{91\cdots 18}{55\cdots 63}a^{16}+\frac{20\cdots 27}{55\cdots 63}a^{15}+\frac{54\cdots 92}{55\cdots 63}a^{14}-\frac{12\cdots 14}{55\cdots 63}a^{13}-\frac{56\cdots 63}{55\cdots 63}a^{12}-\frac{13\cdots 67}{55\cdots 63}a^{11}-\frac{52\cdots 58}{55\cdots 63}a^{10}-\frac{14\cdots 34}{55\cdots 63}a^{9}-\frac{26\cdots 92}{55\cdots 63}a^{8}-\frac{34\cdots 11}{55\cdots 63}a^{7}-\frac{38\cdots 81}{55\cdots 63}a^{6}-\frac{33\cdots 09}{55\cdots 63}a^{5}-\frac{19\cdots 60}{55\cdots 63}a^{4}-\frac{60\cdots 36}{55\cdots 63}a^{3}-\frac{65\cdots 27}{55\cdots 63}a^{2}+\frac{60\cdots 48}{42\cdots 51}a+\frac{13\cdots 62}{55\cdots 63}$, $\frac{55\cdots 61}{10\cdots 11}a^{21}-\frac{48\cdots 45}{10\cdots 11}a^{20}-\frac{17\cdots 24}{10\cdots 11}a^{19}-\frac{89\cdots 49}{10\cdots 11}a^{18}+\frac{14\cdots 05}{10\cdots 11}a^{17}+\frac{23\cdots 50}{10\cdots 11}a^{16}+\frac{45\cdots 91}{10\cdots 11}a^{15}+\frac{12\cdots 36}{10\cdots 11}a^{14}-\frac{23\cdots 57}{10\cdots 11}a^{13}-\frac{12\cdots 99}{10\cdots 11}a^{12}-\frac{30\cdots 01}{10\cdots 11}a^{11}-\frac{11\cdots 94}{10\cdots 11}a^{10}-\frac{34\cdots 44}{10\cdots 11}a^{9}-\frac{63\cdots 67}{10\cdots 11}a^{8}-\frac{84\cdots 11}{10\cdots 11}a^{7}-\frac{95\cdots 90}{10\cdots 11}a^{6}-\frac{86\cdots 12}{10\cdots 11}a^{5}-\frac{51\cdots 64}{10\cdots 11}a^{4}-\frac{16\cdots 19}{10\cdots 11}a^{3}-\frac{17\cdots 18}{10\cdots 11}a^{2}+\frac{25\cdots 83}{10\cdots 11}a+\frac{37\cdots 59}{10\cdots 11}$, $\frac{12\cdots 87}{10\cdots 11}a^{21}-\frac{11\cdots 93}{10\cdots 11}a^{20}-\frac{39\cdots 97}{10\cdots 11}a^{19}-\frac{16\cdots 42}{10\cdots 11}a^{18}+\frac{32\cdots 37}{10\cdots 11}a^{17}+\frac{50\cdots 39}{10\cdots 11}a^{16}+\frac{96\cdots 33}{10\cdots 11}a^{15}+\frac{27\cdots 16}{10\cdots 11}a^{14}-\frac{53\cdots 94}{10\cdots 11}a^{13}-\frac{28\cdots 39}{10\cdots 11}a^{12}-\frac{66\cdots 91}{10\cdots 11}a^{11}-\frac{25\cdots 91}{10\cdots 11}a^{10}-\frac{74\cdots 77}{10\cdots 11}a^{9}-\frac{13\cdots 63}{10\cdots 11}a^{8}-\frac{17\cdots 51}{10\cdots 11}a^{7}-\frac{20\cdots 29}{10\cdots 11}a^{6}-\frac{17\cdots 01}{10\cdots 11}a^{5}-\frac{10\cdots 31}{10\cdots 11}a^{4}-\frac{33\cdots 54}{10\cdots 11}a^{3}-\frac{34\cdots 11}{10\cdots 11}a^{2}+\frac{47\cdots 94}{10\cdots 11}a+\frac{76\cdots 47}{10\cdots 11}$, $\frac{37\cdots 27}{55\cdots 63}a^{21}-\frac{51\cdots 60}{55\cdots 63}a^{20}-\frac{11\cdots 26}{55\cdots 63}a^{19}-\frac{88\cdots 51}{42\cdots 51}a^{18}+\frac{96\cdots 58}{55\cdots 63}a^{17}+\frac{11\cdots 86}{55\cdots 63}a^{16}+\frac{26\cdots 18}{55\cdots 63}a^{15}+\frac{73\cdots 18}{55\cdots 63}a^{14}-\frac{19\cdots 48}{55\cdots 63}a^{13}-\frac{76\cdots 03}{55\cdots 63}a^{12}-\frac{17\cdots 26}{55\cdots 63}a^{11}-\frac{71\cdots 70}{55\cdots 63}a^{10}-\frac{19\cdots 17}{55\cdots 63}a^{9}-\frac{33\cdots 60}{55\cdots 63}a^{8}-\frac{42\cdots 22}{55\cdots 63}a^{7}-\frac{47\cdots 80}{55\cdots 63}a^{6}-\frac{40\cdots 07}{55\cdots 63}a^{5}-\frac{21\cdots 47}{55\cdots 63}a^{4}-\frac{57\cdots 54}{55\cdots 63}a^{3}-\frac{48\cdots 78}{55\cdots 63}a^{2}+\frac{56\cdots 63}{42\cdots 51}a+\frac{11\cdots 46}{55\cdots 63}$, $\frac{28\cdots 47}{55\cdots 63}a^{21}-\frac{22\cdots 42}{55\cdots 63}a^{20}-\frac{93\cdots 34}{55\cdots 63}a^{19}-\frac{41\cdots 88}{42\cdots 51}a^{18}+\frac{77\cdots 96}{55\cdots 63}a^{17}+\frac{12\cdots 23}{55\cdots 63}a^{16}+\frac{23\cdots 27}{55\cdots 63}a^{15}+\frac{67\cdots 16}{55\cdots 63}a^{14}-\frac{11\cdots 16}{55\cdots 63}a^{13}-\frac{69\cdots 52}{55\cdots 63}a^{12}-\frac{16\cdots 87}{55\cdots 63}a^{11}-\frac{61\cdots 25}{55\cdots 63}a^{10}-\frac{18\cdots 06}{55\cdots 63}a^{9}-\frac{33\cdots 86}{55\cdots 63}a^{8}-\frac{44\cdots 81}{55\cdots 63}a^{7}-\frac{50\cdots 51}{55\cdots 63}a^{6}-\frac{45\cdots 19}{55\cdots 63}a^{5}-\frac{26\cdots 58}{55\cdots 63}a^{4}-\frac{83\cdots 37}{55\cdots 63}a^{3}-\frac{80\cdots 18}{55\cdots 63}a^{2}+\frac{93\cdots 14}{42\cdots 51}a+\frac{17\cdots 72}{55\cdots 63}$, $\frac{33\cdots 46}{55\cdots 63}a^{21}-\frac{33\cdots 99}{55\cdots 63}a^{20}-\frac{10\cdots 93}{55\cdots 63}a^{19}-\frac{30\cdots 54}{42\cdots 51}a^{18}+\frac{90\cdots 54}{55\cdots 63}a^{17}+\frac{13\cdots 70}{55\cdots 63}a^{16}+\frac{25\cdots 77}{55\cdots 63}a^{15}+\frac{73\cdots 35}{55\cdots 63}a^{14}-\frac{15\cdots 80}{55\cdots 63}a^{13}-\frac{76\cdots 59}{55\cdots 63}a^{12}-\frac{17\cdots 45}{55\cdots 63}a^{11}-\frac{68\cdots 12}{55\cdots 63}a^{10}-\frac{20\cdots 80}{55\cdots 63}a^{9}-\frac{35\cdots 07}{55\cdots 63}a^{8}-\frac{45\cdots 31}{55\cdots 63}a^{7}-\frac{51\cdots 86}{55\cdots 63}a^{6}-\frac{45\cdots 52}{55\cdots 63}a^{5}-\frac{25\cdots 61}{55\cdots 63}a^{4}-\frac{70\cdots 30}{55\cdots 63}a^{3}-\frac{53\cdots 97}{55\cdots 63}a^{2}+\frac{78\cdots 42}{42\cdots 51}a+\frac{12\cdots 13}{55\cdots 63}$, $\frac{52\cdots 55}{55\cdots 63}a^{21}-\frac{45\cdots 36}{55\cdots 63}a^{20}-\frac{17\cdots 73}{55\cdots 63}a^{19}-\frac{65\cdots 34}{42\cdots 51}a^{18}+\frac{14\cdots 43}{55\cdots 63}a^{17}+\frac{22\cdots 21}{55\cdots 63}a^{16}+\frac{42\cdots 84}{55\cdots 63}a^{15}+\frac{12\cdots 36}{55\cdots 63}a^{14}-\frac{22\cdots 01}{55\cdots 63}a^{13}-\frac{12\cdots 18}{55\cdots 63}a^{12}-\frac{29\cdots 72}{55\cdots 63}a^{11}-\frac{11\cdots 80}{55\cdots 63}a^{10}-\frac{32\cdots 81}{55\cdots 63}a^{9}-\frac{59\cdots 30}{55\cdots 63}a^{8}-\frac{79\cdots 94}{55\cdots 63}a^{7}-\frac{89\cdots 43}{55\cdots 63}a^{6}-\frac{80\cdots 47}{55\cdots 63}a^{5}-\frac{47\cdots 68}{55\cdots 63}a^{4}-\frac{14\cdots 35}{55\cdots 63}a^{3}-\frac{13\cdots 80}{55\cdots 63}a^{2}+\frac{18\cdots 46}{42\cdots 51}a+\frac{28\cdots 24}{55\cdots 63}$, $\frac{34\cdots 89}{55\cdots 63}a^{21}-\frac{30\cdots 36}{55\cdots 63}a^{20}-\frac{11\cdots 49}{55\cdots 63}a^{19}-\frac{42\cdots 65}{42\cdots 51}a^{18}+\frac{92\cdots 73}{55\cdots 63}a^{17}+\frac{14\cdots 00}{55\cdots 63}a^{16}+\frac{28\cdots 90}{55\cdots 63}a^{15}+\frac{79\cdots 33}{55\cdots 63}a^{14}-\frac{14\cdots 27}{55\cdots 63}a^{13}-\frac{81\cdots 48}{55\cdots 63}a^{12}-\frac{19\cdots 83}{55\cdots 63}a^{11}-\frac{73\cdots 43}{55\cdots 63}a^{10}-\frac{21\cdots 92}{55\cdots 63}a^{9}-\frac{39\cdots 39}{55\cdots 63}a^{8}-\frac{52\cdots 41}{55\cdots 63}a^{7}-\frac{59\cdots 62}{55\cdots 63}a^{6}-\frac{53\cdots 70}{55\cdots 63}a^{5}-\frac{31\cdots 56}{55\cdots 63}a^{4}-\frac{10\cdots 14}{55\cdots 63}a^{3}-\frac{11\cdots 69}{55\cdots 63}a^{2}+\frac{10\cdots 69}{42\cdots 51}a+\frac{23\cdots 03}{55\cdots 63}$, $\frac{56\cdots 87}{55\cdots 63}a^{21}-\frac{53\cdots 32}{55\cdots 63}a^{20}-\frac{18\cdots 59}{55\cdots 63}a^{19}-\frac{59\cdots 09}{42\cdots 51}a^{18}+\frac{14\cdots 20}{55\cdots 63}a^{17}+\frac{22\cdots 53}{55\cdots 63}a^{16}+\frac{44\cdots 64}{55\cdots 63}a^{15}+\frac{12\cdots 55}{55\cdots 63}a^{14}-\frac{24\cdots 93}{55\cdots 63}a^{13}-\frac{12\cdots 85}{55\cdots 63}a^{12}-\frac{30\cdots 97}{55\cdots 63}a^{11}-\frac{11\cdots 30}{55\cdots 63}a^{10}-\frac{34\cdots 10}{55\cdots 63}a^{9}-\frac{61\cdots 70}{55\cdots 63}a^{8}-\frac{81\cdots 77}{55\cdots 63}a^{7}-\frac{92\cdots 30}{55\cdots 63}a^{6}-\frac{82\cdots 02}{55\cdots 63}a^{5}-\frac{48\cdots 57}{55\cdots 63}a^{4}-\frac{15\cdots 02}{55\cdots 63}a^{3}-\frac{15\cdots 26}{55\cdots 63}a^{2}+\frac{16\cdots 02}{42\cdots 51}a+\frac{33\cdots 47}{55\cdots 63}$, $\frac{12\cdots 63}{55\cdots 63}a^{21}-\frac{11\cdots 08}{55\cdots 63}a^{20}-\frac{39\cdots 61}{55\cdots 63}a^{19}-\frac{13\cdots 03}{42\cdots 51}a^{18}+\frac{32\cdots 16}{55\cdots 63}a^{17}+\frac{50\cdots 93}{55\cdots 63}a^{16}+\frac{96\cdots 31}{55\cdots 63}a^{15}+\frac{27\cdots 27}{55\cdots 63}a^{14}-\frac{53\cdots 69}{55\cdots 63}a^{13}-\frac{28\cdots 21}{55\cdots 63}a^{12}-\frac{66\cdots 15}{55\cdots 63}a^{11}-\frac{25\cdots 25}{55\cdots 63}a^{10}-\frac{75\cdots 67}{55\cdots 63}a^{9}-\frac{13\cdots 75}{55\cdots 63}a^{8}-\frac{17\cdots 47}{55\cdots 63}a^{7}-\frac{20\cdots 67}{55\cdots 63}a^{6}-\frac{18\cdots 20}{55\cdots 63}a^{5}-\frac{10\cdots 82}{55\cdots 63}a^{4}-\frac{32\cdots 46}{55\cdots 63}a^{3}-\frac{32\cdots 02}{55\cdots 63}a^{2}+\frac{35\cdots 35}{42\cdots 51}a+\frac{69\cdots 84}{55\cdots 63}$, $\frac{71\cdots 23}{55\cdots 63}a^{21}-\frac{57\cdots 77}{55\cdots 63}a^{20}-\frac{23\cdots 38}{55\cdots 63}a^{19}-\frac{10\cdots 46}{42\cdots 51}a^{18}+\frac{19\cdots 71}{55\cdots 63}a^{17}+\frac{32\cdots 79}{55\cdots 63}a^{16}+\frac{59\cdots 93}{55\cdots 63}a^{15}+\frac{16\cdots 03}{55\cdots 63}a^{14}-\frac{29\cdots 55}{55\cdots 63}a^{13}-\frac{17\cdots 91}{55\cdots 63}a^{12}-\frac{40\cdots 54}{55\cdots 63}a^{11}-\frac{15\cdots 94}{55\cdots 63}a^{10}-\frac{45\cdots 19}{55\cdots 63}a^{9}-\frac{84\cdots 81}{55\cdots 63}a^{8}-\frac{11\cdots 29}{55\cdots 63}a^{7}-\frac{12\cdots 87}{55\cdots 63}a^{6}-\frac{11\cdots 62}{55\cdots 63}a^{5}-\frac{70\cdots 37}{55\cdots 63}a^{4}-\frac{23\cdots 35}{55\cdots 63}a^{3}-\frac{25\cdots 50}{55\cdots 63}a^{2}+\frac{25\cdots 67}{42\cdots 51}a+\frac{53\cdots 50}{55\cdots 63}$, $\frac{17\cdots 25}{42\cdots 51}a^{21}-\frac{29\cdots 77}{42\cdots 51}a^{20}-\frac{55\cdots 99}{42\cdots 51}a^{19}+\frac{14\cdots 53}{42\cdots 51}a^{18}+\frac{47\cdots 78}{42\cdots 51}a^{17}+\frac{39\cdots 54}{42\cdots 51}a^{16}+\frac{10\cdots 40}{42\cdots 51}a^{15}+\frac{31\cdots 99}{42\cdots 51}a^{14}-\frac{10\cdots 68}{42\cdots 51}a^{13}-\frac{34\cdots 91}{42\cdots 51}a^{12}-\frac{70\cdots 84}{42\cdots 51}a^{11}-\frac{31\cdots 84}{42\cdots 51}a^{10}-\frac{85\cdots 12}{42\cdots 51}a^{9}-\frac{13\cdots 90}{42\cdots 51}a^{8}-\frac{15\cdots 58}{42\cdots 51}a^{7}-\frac{16\cdots 15}{42\cdots 51}a^{6}-\frac{11\cdots 21}{42\cdots 51}a^{5}-\frac{36\cdots 93}{42\cdots 51}a^{4}+\frac{55\cdots 20}{42\cdots 51}a^{3}+\frac{43\cdots 59}{42\cdots 51}a^{2}-\frac{18\cdots 51}{42\cdots 51}a-\frac{58\cdots 18}{42\cdots 51}$, $\frac{34\cdots 66}{55\cdots 63}a^{21}-\frac{31\cdots 41}{55\cdots 63}a^{20}-\frac{11\cdots 94}{55\cdots 63}a^{19}-\frac{39\cdots 91}{42\cdots 51}a^{18}+\frac{91\cdots 81}{55\cdots 63}a^{17}+\frac{14\cdots 61}{55\cdots 63}a^{16}+\frac{27\cdots 02}{55\cdots 63}a^{15}+\frac{78\cdots 80}{55\cdots 63}a^{14}-\frac{14\cdots 13}{55\cdots 63}a^{13}-\frac{80\cdots 03}{55\cdots 63}a^{12}-\frac{18\cdots 38}{55\cdots 63}a^{11}-\frac{72\cdots 89}{55\cdots 63}a^{10}-\frac{21\cdots 69}{55\cdots 63}a^{9}-\frac{38\cdots 12}{55\cdots 63}a^{8}-\frac{51\cdots 65}{55\cdots 63}a^{7}-\frac{57\cdots 79}{55\cdots 63}a^{6}-\frac{51\cdots 16}{55\cdots 63}a^{5}-\frac{30\cdots 44}{55\cdots 63}a^{4}-\frac{97\cdots 86}{55\cdots 63}a^{3}-\frac{10\cdots 29}{55\cdots 63}a^{2}+\frac{10\cdots 92}{42\cdots 51}a+\frac{21\cdots 58}{55\cdots 63}$, $\frac{60\cdots 84}{55\cdots 63}a^{21}-\frac{12\cdots 89}{55\cdots 63}a^{20}-\frac{20\cdots 19}{55\cdots 63}a^{19}-\frac{17\cdots 35}{42\cdots 51}a^{18}+\frac{16\cdots 19}{55\cdots 63}a^{17}+\frac{36\cdots 41}{55\cdots 63}a^{16}+\frac{61\cdots 52}{55\cdots 63}a^{15}+\frac{16\cdots 43}{55\cdots 63}a^{14}-\frac{18\cdots 42}{55\cdots 63}a^{13}-\frac{16\cdots 18}{55\cdots 63}a^{12}-\frac{42\cdots 94}{55\cdots 63}a^{11}-\frac{14\cdots 69}{55\cdots 63}a^{10}-\frac{45\cdots 57}{55\cdots 63}a^{9}-\frac{90\cdots 57}{55\cdots 63}a^{8}-\frac{12\cdots 10}{55\cdots 63}a^{7}-\frac{14\cdots 26}{55\cdots 63}a^{6}-\frac{14\cdots 67}{55\cdots 63}a^{5}-\frac{94\cdots 82}{55\cdots 63}a^{4}-\frac{35\cdots 56}{55\cdots 63}a^{3}-\frac{50\cdots 97}{55\cdots 63}a^{2}+\frac{38\cdots 30}{42\cdots 51}a+\frac{96\cdots 46}{55\cdots 63}$, $\frac{17\cdots 69}{55\cdots 63}a^{21}-\frac{94\cdots 40}{55\cdots 63}a^{20}-\frac{57\cdots 79}{55\cdots 63}a^{19}-\frac{35\cdots 99}{42\cdots 51}a^{18}+\frac{46\cdots 30}{55\cdots 63}a^{17}+\frac{90\cdots 17}{55\cdots 63}a^{16}+\frac{15\cdots 19}{55\cdots 63}a^{15}+\frac{44\cdots 12}{55\cdots 63}a^{14}-\frac{63\cdots 64}{55\cdots 63}a^{13}-\frac{44\cdots 41}{55\cdots 63}a^{12}-\frac{10\cdots 08}{55\cdots 63}a^{11}-\frac{39\cdots 80}{55\cdots 63}a^{10}-\frac{12\cdots 63}{55\cdots 63}a^{9}-\frac{23\cdots 02}{55\cdots 63}a^{8}-\frac{31\cdots 14}{55\cdots 63}a^{7}-\frac{36\cdots 04}{55\cdots 63}a^{6}-\frac{33\cdots 77}{55\cdots 63}a^{5}-\frac{21\cdots 12}{55\cdots 63}a^{4}-\frac{75\cdots 28}{55\cdots 63}a^{3}-\frac{81\cdots 36}{55\cdots 63}a^{2}+\frac{13\cdots 07}{42\cdots 51}a+\frac{27\cdots 04}{55\cdots 63}$
|
| |
| Regulator: | \( 10182928874900 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{14}\cdot(2\pi)^{4}\cdot 10182928874900 \cdot 1}{2\cdot\sqrt{6172475179135960522642404800603172634624}}\cr\approx \mathstrut & 1.65482644030311 \end{aligned}\] (assuming GRH)
Galois group
$C_2^{10}.F_{11}$ (as 22T34):
| A solvable group of order 112640 |
| The 44 conjugacy class representatives for $C_2^{10}.F_{11}$ |
| Character table for $C_2^{10}.F_{11}$ |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 22 sibling: | data not computed |
| Degree 44 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.10.0.1}{10} }^{2}{,}\,{\href{/padicField/3.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/padicField/5.2.0.1}{2} }$ | R | R | ${\href{/padicField/13.5.0.1}{5} }^{4}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.5.0.1}{5} }^{4}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.10.0.1}{10} }{,}\,{\href{/padicField/19.5.0.1}{5} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.11.0.1}{11} }^{2}$ | ${\href{/padicField/29.10.0.1}{10} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.10.0.1}{10} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.10.0.1}{10} }{,}\,{\href{/padicField/37.5.0.1}{5} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.5.0.1}{5} }^{4}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{9}$ | ${\href{/padicField/47.10.0.1}{10} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.10.0.1}{10} }{,}\,{\href{/padicField/53.5.0.1}{5} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }$ | $20{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.22.28a1.1 | $x^{22} + 2 x^{7} + 2$ | $22$ | $1$ | $28$ | 22T34 | not computed |
|
\(7\)
| $\Q_{7}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{7}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 7.5.2.5a1.1 | $x^{10} + 2 x^{6} + 8 x^{5} + x^{2} + 15 x + 16$ | $2$ | $5$ | $5$ | $C_{10}$ | $$[\ ]_{2}^{5}$$ | |
| 7.5.2.5a1.1 | $x^{10} + 2 x^{6} + 8 x^{5} + x^{2} + 15 x + 16$ | $2$ | $5$ | $5$ | $C_{10}$ | $$[\ ]_{2}^{5}$$ | |
|
\(11\)
| 11.1.11.11a1.1 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $$[\frac{11}{10}]_{10}$$ |
| 11.1.11.11a1.1 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $$[\frac{11}{10}]_{10}$$ |