Normalized defining polynomial
\( x^{22} - 2 x^{21} - 7 x^{20} + 14 x^{19} + 18 x^{18} - 67 x^{17} - 101 x^{16} + 234 x^{15} + 497 x^{14} + \cdots - 1 \)
Invariants
| Degree: | $22$ |
| |
| Signature: | $[14, 4]$ |
| |
| Discriminant: |
\(31919563459480622441144580078125\)
\(\medspace = 5^{11}\cdot 43^{2}\cdot 547^{2}\cdot 34374601^{2}\)
|
| |
| Root discriminant: | \(27.04\) |
| |
| Galois root discriminant: | $5^{1/2}43^{1/2}547^{1/2}34374601^{1/2}\approx 2010627.9990602438$ | ||
| Ramified primes: |
\(5\), \(43\), \(547\), \(34374601\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{13\cdots 21}a^{21}+\frac{44\cdots 35}{13\cdots 21}a^{20}+\frac{60\cdots 87}{13\cdots 21}a^{19}-\frac{46\cdots 86}{13\cdots 21}a^{18}+\frac{19\cdots 09}{13\cdots 21}a^{17}-\frac{24\cdots 86}{13\cdots 21}a^{16}+\frac{37\cdots 58}{13\cdots 21}a^{15}-\frac{62\cdots 98}{13\cdots 21}a^{14}-\frac{51\cdots 72}{13\cdots 21}a^{13}-\frac{35\cdots 82}{13\cdots 21}a^{12}-\frac{25\cdots 57}{13\cdots 21}a^{11}+\frac{62\cdots 28}{13\cdots 21}a^{10}+\frac{53\cdots 13}{13\cdots 21}a^{9}-\frac{54\cdots 27}{13\cdots 21}a^{8}+\frac{12\cdots 85}{13\cdots 21}a^{7}-\frac{19\cdots 19}{13\cdots 21}a^{6}+\frac{35\cdots 02}{13\cdots 21}a^{5}-\frac{42\cdots 40}{13\cdots 21}a^{4}+\frac{13\cdots 62}{13\cdots 21}a^{3}-\frac{49\cdots 13}{13\cdots 21}a^{2}-\frac{38\cdots 93}{13\cdots 21}a-\frac{38\cdots 02}{13\cdots 21}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $17$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{66\cdots 55}{13\cdots 21}a^{21}-\frac{27\cdots 63}{13\cdots 21}a^{20}-\frac{71\cdots 58}{13\cdots 21}a^{19}+\frac{38\cdots 64}{13\cdots 21}a^{18}+\frac{26\cdots 17}{13\cdots 21}a^{17}-\frac{36\cdots 15}{13\cdots 21}a^{16}-\frac{12\cdots 25}{13\cdots 21}a^{15}+\frac{82\cdots 74}{13\cdots 21}a^{14}+\frac{55\cdots 98}{13\cdots 21}a^{13}+\frac{17\cdots 36}{13\cdots 21}a^{12}-\frac{84\cdots 03}{13\cdots 21}a^{11}-\frac{47\cdots 19}{13\cdots 21}a^{10}+\frac{55\cdots 62}{13\cdots 21}a^{9}+\frac{40\cdots 15}{13\cdots 21}a^{8}-\frac{26\cdots 50}{13\cdots 21}a^{7}-\frac{23\cdots 13}{13\cdots 21}a^{6}+\frac{17\cdots 98}{13\cdots 21}a^{5}+\frac{83\cdots 74}{13\cdots 21}a^{4}-\frac{81\cdots 16}{13\cdots 21}a^{3}-\frac{10\cdots 75}{13\cdots 21}a^{2}+\frac{14\cdots 27}{13\cdots 21}a+\frac{25\cdots 59}{13\cdots 21}$, $\frac{10\cdots 47}{13\cdots 21}a^{21}-\frac{25\cdots 73}{13\cdots 21}a^{20}-\frac{53\cdots 06}{13\cdots 21}a^{19}+\frac{14\cdots 27}{13\cdots 21}a^{18}+\frac{76\cdots 70}{13\cdots 21}a^{17}-\frac{61\cdots 70}{13\cdots 21}a^{16}-\frac{71\cdots 96}{13\cdots 21}a^{15}+\frac{22\cdots 63}{13\cdots 21}a^{14}+\frac{35\cdots 51}{13\cdots 21}a^{13}-\frac{25\cdots 88}{13\cdots 21}a^{12}-\frac{49\cdots 84}{13\cdots 21}a^{11}+\frac{58\cdots 47}{13\cdots 21}a^{10}+\frac{30\cdots 30}{13\cdots 21}a^{9}+\frac{11\cdots 40}{13\cdots 21}a^{8}-\frac{17\cdots 73}{13\cdots 21}a^{7}+\frac{28\cdots 68}{13\cdots 21}a^{6}+\frac{79\cdots 44}{13\cdots 21}a^{5}-\frac{22\cdots 66}{13\cdots 21}a^{4}-\frac{14\cdots 60}{13\cdots 21}a^{3}+\frac{37\cdots 47}{13\cdots 21}a^{2}+\frac{91\cdots 14}{13\cdots 21}a+\frac{66\cdots 55}{13\cdots 21}$, $\frac{11\cdots 34}{13\cdots 21}a^{21}-\frac{22\cdots 86}{13\cdots 21}a^{20}-\frac{73\cdots 27}{13\cdots 21}a^{19}+\frac{15\cdots 40}{13\cdots 21}a^{18}+\frac{17\cdots 38}{13\cdots 21}a^{17}-\frac{70\cdots 66}{13\cdots 21}a^{16}-\frac{10\cdots 90}{13\cdots 21}a^{15}+\frac{24\cdots 82}{13\cdots 21}a^{14}+\frac{51\cdots 55}{13\cdots 21}a^{13}-\frac{26\cdots 51}{13\cdots 21}a^{12}-\frac{87\cdots 69}{13\cdots 21}a^{11}+\frac{27\cdots 42}{13\cdots 21}a^{10}+\frac{69\cdots 31}{13\cdots 21}a^{9}+\frac{14\cdots 42}{13\cdots 21}a^{8}-\frac{38\cdots 54}{13\cdots 21}a^{7}-\frac{74\cdots 35}{13\cdots 21}a^{6}+\frac{20\cdots 46}{13\cdots 21}a^{5}+\frac{36\cdots 04}{13\cdots 21}a^{4}-\frac{78\cdots 34}{13\cdots 21}a^{3}+\frac{57\cdots 63}{13\cdots 21}a^{2}+\frac{11\cdots 04}{13\cdots 21}a-\frac{79\cdots 88}{13\cdots 21}$, $\frac{28\cdots 31}{13\cdots 21}a^{21}-\frac{42\cdots 60}{13\cdots 21}a^{20}-\frac{21\cdots 90}{13\cdots 21}a^{19}+\frac{26\cdots 94}{13\cdots 21}a^{18}+\frac{64\cdots 12}{13\cdots 21}a^{17}-\frac{14\cdots 90}{13\cdots 21}a^{16}-\frac{37\cdots 57}{13\cdots 21}a^{15}+\frac{44\cdots 90}{13\cdots 21}a^{14}+\frac{16\cdots 30}{13\cdots 21}a^{13}+\frac{23\cdots 82}{13\cdots 21}a^{12}-\frac{24\cdots 82}{13\cdots 21}a^{11}-\frac{16\cdots 96}{13\cdots 21}a^{10}+\frac{14\cdots 99}{13\cdots 21}a^{9}+\frac{16\cdots 10}{13\cdots 21}a^{8}-\frac{36\cdots 62}{13\cdots 21}a^{7}-\frac{76\cdots 93}{13\cdots 21}a^{6}+\frac{21\cdots 04}{13\cdots 21}a^{5}+\frac{33\cdots 30}{13\cdots 21}a^{4}-\frac{11\cdots 06}{13\cdots 21}a^{3}-\frac{13\cdots 42}{13\cdots 21}a^{2}+\frac{16\cdots 02}{13\cdots 21}a+\frac{16\cdots 96}{13\cdots 21}$, $\frac{19\cdots 12}{13\cdots 21}a^{21}-\frac{32\cdots 13}{13\cdots 21}a^{20}-\frac{14\cdots 51}{13\cdots 21}a^{19}+\frac{22\cdots 60}{13\cdots 21}a^{18}+\frac{40\cdots 83}{13\cdots 21}a^{17}-\frac{11\cdots 46}{13\cdots 21}a^{16}-\frac{22\cdots 26}{13\cdots 21}a^{15}+\frac{37\cdots 28}{13\cdots 21}a^{14}+\frac{10\cdots 72}{13\cdots 21}a^{13}-\frac{17\cdots 64}{13\cdots 21}a^{12}-\frac{16\cdots 44}{13\cdots 21}a^{11}-\frac{47\cdots 01}{13\cdots 21}a^{10}+\frac{11\cdots 08}{13\cdots 21}a^{9}+\frac{59\cdots 44}{13\cdots 21}a^{8}-\frac{51\cdots 38}{13\cdots 21}a^{7}-\frac{27\cdots 44}{13\cdots 21}a^{6}+\frac{29\cdots 07}{13\cdots 21}a^{5}+\frac{77\cdots 50}{13\cdots 21}a^{4}-\frac{11\cdots 87}{13\cdots 21}a^{3}-\frac{17\cdots 71}{13\cdots 21}a^{2}+\frac{12\cdots 35}{13\cdots 21}a+\frac{22\cdots 21}{13\cdots 21}$, $\frac{85\cdots 58}{13\cdots 21}a^{21}-\frac{14\cdots 31}{13\cdots 21}a^{20}-\frac{65\cdots 19}{13\cdots 21}a^{19}+\frac{10\cdots 28}{13\cdots 21}a^{18}+\frac{18\cdots 07}{13\cdots 21}a^{17}-\frac{52\cdots 21}{13\cdots 21}a^{16}-\frac{10\cdots 79}{13\cdots 21}a^{15}+\frac{16\cdots 82}{13\cdots 21}a^{14}+\frac{47\cdots 79}{13\cdots 21}a^{13}-\frac{89\cdots 15}{13\cdots 21}a^{12}-\frac{78\cdots 56}{13\cdots 21}a^{11}-\frac{20\cdots 77}{13\cdots 21}a^{10}+\frac{55\cdots 34}{13\cdots 21}a^{9}+\frac{26\cdots 11}{13\cdots 21}a^{8}-\frac{25\cdots 64}{13\cdots 21}a^{7}-\frac{12\cdots 69}{13\cdots 21}a^{6}+\frac{14\cdots 70}{13\cdots 21}a^{5}+\frac{33\cdots 72}{13\cdots 21}a^{4}-\frac{57\cdots 20}{13\cdots 21}a^{3}-\frac{62\cdots 64}{13\cdots 21}a^{2}+\frac{62\cdots 97}{13\cdots 21}a+\frac{10\cdots 11}{13\cdots 21}$, $\frac{11\cdots 06}{13\cdots 21}a^{21}-\frac{59\cdots 40}{13\cdots 21}a^{20}-\frac{71\cdots 65}{13\cdots 21}a^{19}+\frac{41\cdots 44}{13\cdots 21}a^{18}-\frac{28\cdots 76}{13\cdots 21}a^{17}-\frac{14\cdots 53}{13\cdots 21}a^{16}+\frac{12\cdots 66}{13\cdots 21}a^{15}+\frac{64\cdots 38}{13\cdots 21}a^{14}-\frac{24\cdots 68}{13\cdots 21}a^{13}-\frac{21\cdots 74}{13\cdots 21}a^{12}-\frac{24\cdots 19}{13\cdots 21}a^{11}+\frac{30\cdots 56}{13\cdots 21}a^{10}+\frac{10\cdots 56}{13\cdots 21}a^{9}-\frac{20\cdots 29}{13\cdots 21}a^{8}-\frac{10\cdots 96}{13\cdots 21}a^{7}+\frac{10\cdots 18}{13\cdots 21}a^{6}+\frac{51\cdots 13}{13\cdots 21}a^{5}-\frac{63\cdots 54}{13\cdots 21}a^{4}-\frac{10\cdots 05}{13\cdots 21}a^{3}+\frac{23\cdots 38}{13\cdots 21}a^{2}-\frac{18\cdots 22}{13\cdots 21}a-\frac{22\cdots 82}{13\cdots 21}$, $\frac{33\cdots 49}{13\cdots 21}a^{21}-\frac{41\cdots 03}{13\cdots 21}a^{20}-\frac{35\cdots 00}{13\cdots 21}a^{19}+\frac{39\cdots 61}{13\cdots 21}a^{18}+\frac{14\cdots 85}{13\cdots 21}a^{17}-\frac{11\cdots 29}{13\cdots 21}a^{16}-\frac{73\cdots 99}{13\cdots 21}a^{15}+\frac{14\cdots 06}{13\cdots 21}a^{14}+\frac{30\cdots 22}{13\cdots 21}a^{13}+\frac{21\cdots 94}{13\cdots 21}a^{12}-\frac{42\cdots 77}{13\cdots 21}a^{11}-\frac{51\cdots 27}{13\cdots 21}a^{10}+\frac{19\cdots 26}{13\cdots 21}a^{9}+\frac{44\cdots 77}{13\cdots 21}a^{8}-\frac{78\cdots 02}{13\cdots 21}a^{7}-\frac{21\cdots 90}{13\cdots 21}a^{6}+\frac{15\cdots 36}{13\cdots 21}a^{5}+\frac{10\cdots 06}{13\cdots 21}a^{4}-\frac{20\cdots 58}{13\cdots 21}a^{3}-\frac{37\cdots 07}{13\cdots 21}a^{2}+\frac{41\cdots 39}{13\cdots 21}a+\frac{41\cdots 76}{13\cdots 21}$, $\frac{14\cdots 28}{13\cdots 21}a^{21}-\frac{19\cdots 84}{13\cdots 21}a^{20}-\frac{12\cdots 59}{13\cdots 21}a^{19}+\frac{13\cdots 87}{13\cdots 21}a^{18}+\frac{38\cdots 56}{13\cdots 21}a^{17}-\frac{81\cdots 49}{13\cdots 21}a^{16}-\frac{20\cdots 48}{13\cdots 21}a^{15}+\frac{23\cdots 76}{13\cdots 21}a^{14}+\frac{92\cdots 82}{13\cdots 21}a^{13}+\frac{97\cdots 42}{13\cdots 21}a^{12}-\frac{14\cdots 85}{13\cdots 21}a^{11}-\frac{75\cdots 76}{13\cdots 21}a^{10}+\frac{89\cdots 77}{13\cdots 21}a^{9}+\frac{74\cdots 67}{13\cdots 21}a^{8}-\frac{33\cdots 54}{13\cdots 21}a^{7}-\frac{36\cdots 56}{13\cdots 21}a^{6}+\frac{20\cdots 15}{13\cdots 21}a^{5}+\frac{13\cdots 62}{13\cdots 21}a^{4}-\frac{95\cdots 13}{13\cdots 21}a^{3}-\frac{40\cdots 42}{13\cdots 21}a^{2}+\frac{12\cdots 12}{13\cdots 21}a+\frac{44\cdots 25}{13\cdots 21}$, $\frac{23\cdots 64}{13\cdots 21}a^{21}-\frac{39\cdots 60}{13\cdots 21}a^{20}-\frac{17\cdots 35}{13\cdots 21}a^{19}+\frac{26\cdots 07}{13\cdots 21}a^{18}+\frac{49\cdots 30}{13\cdots 21}a^{17}-\frac{13\cdots 42}{13\cdots 21}a^{16}-\frac{28\cdots 25}{13\cdots 21}a^{15}+\frac{44\cdots 14}{13\cdots 21}a^{14}+\frac{12\cdots 27}{13\cdots 21}a^{13}-\frac{14\cdots 23}{13\cdots 21}a^{12}-\frac{20\cdots 58}{13\cdots 21}a^{11}-\frac{70\cdots 07}{13\cdots 21}a^{10}+\frac{13\cdots 17}{13\cdots 21}a^{9}+\frac{81\cdots 05}{13\cdots 21}a^{8}-\frac{58\cdots 54}{13\cdots 21}a^{7}-\frac{38\cdots 39}{13\cdots 21}a^{6}+\frac{33\cdots 66}{13\cdots 21}a^{5}+\frac{12\cdots 89}{13\cdots 21}a^{4}-\frac{13\cdots 52}{13\cdots 21}a^{3}-\frac{33\cdots 14}{13\cdots 21}a^{2}+\frac{16\cdots 30}{13\cdots 21}a+\frac{37\cdots 48}{13\cdots 21}$, $\frac{12\cdots 19}{13\cdots 21}a^{21}-\frac{19\cdots 24}{13\cdots 21}a^{20}-\frac{96\cdots 99}{13\cdots 21}a^{19}+\frac{12\cdots 99}{13\cdots 21}a^{18}+\frac{28\cdots 60}{13\cdots 21}a^{17}-\frac{70\cdots 94}{13\cdots 21}a^{16}-\frac{15\cdots 03}{13\cdots 21}a^{15}+\frac{21\cdots 41}{13\cdots 21}a^{14}+\frac{72\cdots 49}{13\cdots 21}a^{13}-\frac{10\cdots 21}{13\cdots 21}a^{12}-\frac{11\cdots 93}{13\cdots 21}a^{11}-\frac{48\cdots 26}{13\cdots 21}a^{10}+\frac{73\cdots 63}{13\cdots 21}a^{9}+\frac{52\cdots 89}{13\cdots 21}a^{8}-\frac{29\cdots 59}{13\cdots 21}a^{7}-\frac{25\cdots 51}{13\cdots 21}a^{6}+\frac{17\cdots 90}{13\cdots 21}a^{5}+\frac{89\cdots 44}{13\cdots 21}a^{4}-\frac{75\cdots 38}{13\cdots 21}a^{3}-\frac{25\cdots 81}{13\cdots 21}a^{2}+\frac{93\cdots 97}{13\cdots 21}a+\frac{30\cdots 31}{13\cdots 21}$, $\frac{59\cdots 76}{13\cdots 21}a^{21}-\frac{67\cdots 02}{13\cdots 21}a^{20}-\frac{49\cdots 87}{13\cdots 21}a^{19}+\frac{43\cdots 97}{13\cdots 21}a^{18}+\frac{16\cdots 65}{13\cdots 21}a^{17}-\frac{27\cdots 20}{13\cdots 21}a^{16}-\frac{90\cdots 83}{13\cdots 21}a^{15}+\frac{74\cdots 85}{13\cdots 21}a^{14}+\frac{39\cdots 93}{13\cdots 21}a^{13}+\frac{13\cdots 27}{13\cdots 21}a^{12}-\frac{56\cdots 32}{13\cdots 21}a^{11}-\frac{46\cdots 90}{13\cdots 21}a^{10}+\frac{29\cdots 94}{13\cdots 21}a^{9}+\frac{42\cdots 26}{13\cdots 21}a^{8}-\frac{70\cdots 87}{13\cdots 21}a^{7}-\frac{20\cdots 34}{13\cdots 21}a^{6}+\frac{47\cdots 95}{13\cdots 21}a^{5}+\frac{91\cdots 72}{13\cdots 21}a^{4}-\frac{28\cdots 70}{13\cdots 21}a^{3}-\frac{31\cdots 26}{13\cdots 21}a^{2}+\frac{48\cdots 11}{13\cdots 21}a+\frac{35\cdots 63}{13\cdots 21}$, $\frac{10\cdots 99}{13\cdots 21}a^{21}-\frac{16\cdots 95}{13\cdots 21}a^{20}-\frac{82\cdots 85}{13\cdots 21}a^{19}+\frac{11\cdots 37}{13\cdots 21}a^{18}+\frac{24\cdots 53}{13\cdots 21}a^{17}-\frac{61\cdots 87}{13\cdots 21}a^{16}-\frac{13\cdots 35}{13\cdots 21}a^{15}+\frac{19\cdots 94}{13\cdots 21}a^{14}+\frac{61\cdots 50}{13\cdots 21}a^{13}-\frac{33\cdots 40}{13\cdots 21}a^{12}-\frac{95\cdots 26}{13\cdots 21}a^{11}-\frac{37\cdots 68}{13\cdots 21}a^{10}+\frac{63\cdots 64}{13\cdots 21}a^{9}+\frac{40\cdots 91}{13\cdots 21}a^{8}-\frac{26\cdots 24}{13\cdots 21}a^{7}-\frac{19\cdots 07}{13\cdots 21}a^{6}+\frac{15\cdots 10}{13\cdots 21}a^{5}+\frac{65\cdots 52}{13\cdots 21}a^{4}-\frac{64\cdots 53}{13\cdots 21}a^{3}-\frac{17\cdots 42}{13\cdots 21}a^{2}+\frac{73\cdots 75}{13\cdots 21}a+\frac{18\cdots 52}{13\cdots 21}$, $\frac{12\cdots 85}{13\cdots 21}a^{21}-\frac{24\cdots 21}{13\cdots 21}a^{20}-\frac{91\cdots 66}{13\cdots 21}a^{19}+\frac{16\cdots 64}{13\cdots 21}a^{18}+\frac{24\cdots 36}{13\cdots 21}a^{17}-\frac{80\cdots 08}{13\cdots 21}a^{16}-\frac{13\cdots 36}{13\cdots 21}a^{15}+\frac{27\cdots 92}{13\cdots 21}a^{14}+\frac{65\cdots 58}{13\cdots 21}a^{13}-\frac{22\cdots 84}{13\cdots 21}a^{12}-\frac{10\cdots 90}{13\cdots 21}a^{11}-\frac{15\cdots 83}{13\cdots 21}a^{10}+\frac{80\cdots 50}{13\cdots 21}a^{9}+\frac{28\cdots 48}{13\cdots 21}a^{8}-\frac{38\cdots 37}{13\cdots 21}a^{7}-\frac{13\cdots 85}{13\cdots 21}a^{6}+\frac{21\cdots 86}{13\cdots 21}a^{5}+\frac{23\cdots 19}{13\cdots 21}a^{4}-\frac{82\cdots 24}{13\cdots 21}a^{3}-\frac{10\cdots 58}{13\cdots 21}a^{2}+\frac{93\cdots 29}{13\cdots 21}a+\frac{48\cdots 24}{13\cdots 21}$, $\frac{78\cdots 03}{13\cdots 21}a^{21}-\frac{32\cdots 32}{13\cdots 21}a^{20}-\frac{30\cdots 82}{13\cdots 21}a^{19}+\frac{16\cdots 16}{13\cdots 21}a^{18}-\frac{15\cdots 90}{13\cdots 21}a^{17}-\frac{47\cdots 64}{13\cdots 21}a^{16}+\frac{24\cdots 63}{13\cdots 21}a^{15}+\frac{22\cdots 00}{13\cdots 21}a^{14}-\frac{36\cdots 93}{13\cdots 21}a^{13}-\frac{51\cdots 05}{13\cdots 21}a^{12}+\frac{72\cdots 15}{13\cdots 21}a^{11}+\frac{47\cdots 18}{13\cdots 21}a^{10}-\frac{29\cdots 95}{13\cdots 21}a^{9}-\frac{24\cdots 39}{13\cdots 21}a^{8}+\frac{23\cdots 36}{13\cdots 21}a^{7}+\frac{18\cdots 56}{13\cdots 21}a^{6}-\frac{69\cdots 58}{13\cdots 21}a^{5}-\frac{68\cdots 72}{13\cdots 21}a^{4}+\frac{53\cdots 14}{13\cdots 21}a^{3}-\frac{60\cdots 19}{13\cdots 21}a^{2}-\frac{98\cdots 26}{13\cdots 21}a+\frac{31\cdots 85}{13\cdots 21}$, $\frac{60\cdots 68}{13\cdots 21}a^{21}-\frac{55\cdots 50}{13\cdots 21}a^{20}-\frac{51\cdots 37}{13\cdots 21}a^{19}+\frac{36\cdots 51}{13\cdots 21}a^{18}+\frac{16\cdots 49}{13\cdots 21}a^{17}-\frac{27\cdots 19}{13\cdots 21}a^{16}-\frac{93\cdots 31}{13\cdots 21}a^{15}+\frac{59\cdots 55}{13\cdots 21}a^{14}+\frac{39\cdots 94}{13\cdots 21}a^{13}+\frac{19\cdots 99}{13\cdots 21}a^{12}-\frac{45\cdots 18}{13\cdots 21}a^{11}-\frac{42\cdots 14}{13\cdots 21}a^{10}+\frac{16\cdots 61}{13\cdots 21}a^{9}+\frac{27\cdots 13}{13\cdots 21}a^{8}-\frac{52\cdots 69}{13\cdots 21}a^{7}-\frac{12\cdots 10}{13\cdots 21}a^{6}+\frac{50\cdots 96}{13\cdots 21}a^{5}+\frac{57\cdots 04}{13\cdots 21}a^{4}-\frac{18\cdots 42}{13\cdots 21}a^{3}-\frac{12\cdots 91}{13\cdots 21}a^{2}+\frac{39\cdots 37}{13\cdots 21}a+\frac{30\cdots 23}{13\cdots 21}$, $\frac{18\cdots 65}{13\cdots 21}a^{21}-\frac{30\cdots 40}{13\cdots 21}a^{20}-\frac{13\cdots 45}{13\cdots 21}a^{19}+\frac{21\cdots 33}{13\cdots 21}a^{18}+\frac{39\cdots 13}{13\cdots 21}a^{17}-\frac{10\cdots 76}{13\cdots 21}a^{16}-\frac{21\cdots 30}{13\cdots 21}a^{15}+\frac{35\cdots 65}{13\cdots 21}a^{14}+\frac{10\cdots 21}{13\cdots 21}a^{13}-\frac{15\cdots 76}{13\cdots 21}a^{12}-\frac{16\cdots 60}{13\cdots 21}a^{11}-\frac{48\cdots 48}{13\cdots 21}a^{10}+\frac{11\cdots 78}{13\cdots 21}a^{9}+\frac{59\cdots 04}{13\cdots 21}a^{8}-\frac{49\cdots 65}{13\cdots 21}a^{7}-\frac{27\cdots 12}{13\cdots 21}a^{6}+\frac{28\cdots 63}{13\cdots 21}a^{5}+\frac{80\cdots 16}{13\cdots 21}a^{4}-\frac{11\cdots 27}{13\cdots 21}a^{3}-\frac{17\cdots 18}{13\cdots 21}a^{2}+\frac{12\cdots 21}{13\cdots 21}a+\frac{20\cdots 45}{13\cdots 21}$
|
| |
| Regulator: | \( 73525321.2665 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{14}\cdot(2\pi)^{4}\cdot 73525321.2665 \cdot 1}{2\cdot\sqrt{31919563459480622441144580078125}}\cr\approx \mathstrut & 0.166156706924 \end{aligned}\] (assuming GRH)
Galois group
$C_2\times S_{11}$ (as 22T47):
| A non-solvable group of order 79833600 |
| The 112 conjugacy class representatives for $C_2\times S_{11}$ |
| Character table for $C_2\times S_{11}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 11.7.808524990121.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 22 sibling: | data not computed |
| Degree 44 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22$ | $22$ | R | $22$ | ${\href{/padicField/11.9.0.1}{9} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | ${\href{/padicField/13.14.0.1}{14} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.10.0.1}{10} }{,}\,{\href{/padicField/17.6.0.1}{6} }^{2}$ | ${\href{/padicField/19.3.0.1}{3} }^{4}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.14.0.1}{14} }{,}\,{\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.11.0.1}{11} }^{2}$ | ${\href{/padicField/31.5.0.1}{5} }^{4}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | $22$ | ${\href{/padicField/41.10.0.1}{10} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/47.4.0.1}{4} }^{4}{,}\,{\href{/padicField/47.2.0.1}{2} }^{3}$ | ${\href{/padicField/53.10.0.1}{10} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(5\)
| 5.11.2.11a1.2 | $x^{22} + 6 x^{12} + 6 x^{11} + 9 x^{2} + 18 x + 14$ | $2$ | $11$ | $11$ | 22T1 | $$[\ ]_{2}^{11}$$ |
|
\(43\)
| 43.2.1.0a1.1 | $x^{2} + 42 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 43.2.1.0a1.1 | $x^{2} + 42 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 43.2.2.2a1.2 | $x^{4} + 84 x^{3} + 1770 x^{2} + 252 x + 52$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 43.14.1.0a1.1 | $x^{14} + 38 x^{7} + 22 x^{6} + 24 x^{5} + 37 x^{4} + 18 x^{3} + 4 x^{2} + 19 x + 3$ | $1$ | $14$ | $0$ | $C_{14}$ | $$[\ ]^{14}$$ | |
|
\(547\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $4$ | $2$ | $2$ | $2$ | ||||
| Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | ||
| Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | ||
|
\(34374601\)
| $\Q_{34374601}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{34374601}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | ||
| Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ |