Properties

Label 22.14.3191956345...8125.1
Degree $22$
Signature $[14, 4]$
Discriminant $5^{11}\cdot 43^{2}\cdot 547^{2}\cdot 34374601^{2}$
Root discriminant $27.04$
Ramified primes $5, 43, 547, 34374601$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 22T47

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -1, 16, 7, -90, 6, 226, -88, -418, 147, 753, 23, -893, -273, 497, 234, -101, -67, 18, 14, -7, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 2*x^21 - 7*x^20 + 14*x^19 + 18*x^18 - 67*x^17 - 101*x^16 + 234*x^15 + 497*x^14 - 273*x^13 - 893*x^12 + 23*x^11 + 753*x^10 + 147*x^9 - 418*x^8 - 88*x^7 + 226*x^6 + 6*x^5 - 90*x^4 + 7*x^3 + 16*x^2 - x - 1)
 
gp: K = bnfinit(x^22 - 2*x^21 - 7*x^20 + 14*x^19 + 18*x^18 - 67*x^17 - 101*x^16 + 234*x^15 + 497*x^14 - 273*x^13 - 893*x^12 + 23*x^11 + 753*x^10 + 147*x^9 - 418*x^8 - 88*x^7 + 226*x^6 + 6*x^5 - 90*x^4 + 7*x^3 + 16*x^2 - x - 1, 1)
 

Normalized defining polynomial

\( x^{22} - 2 x^{21} - 7 x^{20} + 14 x^{19} + 18 x^{18} - 67 x^{17} - 101 x^{16} + 234 x^{15} + 497 x^{14} - 273 x^{13} - 893 x^{12} + 23 x^{11} + 753 x^{10} + 147 x^{9} - 418 x^{8} - 88 x^{7} + 226 x^{6} + 6 x^{5} - 90 x^{4} + 7 x^{3} + 16 x^{2} - x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[14, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(31919563459480622441144580078125=5^{11}\cdot 43^{2}\cdot 547^{2}\cdot 34374601^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $27.04$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 43, 547, 34374601$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{1325914530737524621} a^{21} + \frac{448523034773011435}{1325914530737524621} a^{20} + \frac{60895253381014387}{1325914530737524621} a^{19} - \frac{465043176648431886}{1325914530737524621} a^{18} + \frac{191619929257122309}{1325914530737524621} a^{17} - \frac{247872319115922686}{1325914530737524621} a^{16} + \frac{373802862007984858}{1325914530737524621} a^{15} - \frac{621711033409974498}{1325914530737524621} a^{14} - \frac{518493388111088972}{1325914530737524621} a^{13} - \frac{353055875683546982}{1325914530737524621} a^{12} - \frac{253013172380413357}{1325914530737524621} a^{11} + \frac{629468894051682428}{1325914530737524621} a^{10} + \frac{532727007524532713}{1325914530737524621} a^{9} - \frac{540402043568653027}{1325914530737524621} a^{8} + \frac{125198104722412285}{1325914530737524621} a^{7} - \frac{19433771485550519}{1325914530737524621} a^{6} + \frac{355403583977920202}{1325914530737524621} a^{5} - \frac{427598569834050640}{1325914530737524621} a^{4} + \frac{135729423205129962}{1325914530737524621} a^{3} - \frac{495226434317360913}{1325914530737524621} a^{2} - \frac{386709058999787293}{1325914530737524621} a - \frac{384850908358753902}{1325914530737524621}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $17$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 73525321.2665 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

22T47:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 79833600
The 112 conjugacy class representatives for t22n47 are not computed
Character table for t22n47 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 11.7.808524990121.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 22 sibling: data not computed
Degree 44 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $22$ $22$ R $22$ ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ $22$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
5Data not computed
$43$43.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
43.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
43.4.2.1$x^{4} + 215 x^{2} + 16641$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
43.14.0.1$x^{14} - x + 5$$1$$14$$0$$C_{14}$$[\ ]^{14}$
547Data not computed
34374601Data not computed