Show commands: Magma
Group invariants
| Abstract group: | $C_2\times S_{11}$ |
| |
| Order: | $79833600=2^{9} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 11$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | no |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $22$ |
| |
| Transitive number $t$: | $47$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,13,20,22,18,7,4,16,10,11,6,2,14,19,21,17,8,3,15,9,12,5)$, $(1,15,10,8,6,20,12)(2,16,9,7,5,19,11)(3,17,22,13)(4,18,21,14)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $39916800$: $S_{11}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 11: $S_{11}$
Low degree siblings
22T47, 44T1258Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
112 x 112 character table
Regular extensions
Data not computed