Normalized defining polynomial
\( x^{22} - 44 x^{20} - 22 x^{19} + 660 x^{18} + 704 x^{17} - 4048 x^{16} - 8448 x^{15} + 10516 x^{14} + 48312 x^{13} - 15180 x^{12} - 118720 x^{11} + 17776 x^{10} + 67408 x^{9} + 84392 x^{8} + 3696 x^{7} - 151976 x^{6} - 9328 x^{5} + 131648 x^{4} + 71104 x^{3} + 8976 x^{2} - 704 x - 48 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24689900716543842090569619202412690538496=2^{30}\cdot 7^{10}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{4} a^{12}$, $\frac{1}{4} a^{13}$, $\frac{1}{4} a^{14}$, $\frac{1}{4} a^{15}$, $\frac{1}{4} a^{16}$, $\frac{1}{8} a^{17}$, $\frac{1}{8} a^{18}$, $\frac{1}{8} a^{19}$, $\frac{1}{8} a^{20}$, $\frac{1}{348200342623240207523201150553776349945973301080} a^{21} + \frac{1229886365198684841091183732357151434439351872}{43525042827905025940400143819222043743246662635} a^{20} - \frac{1523129812564417803949721394753711448686212709}{174100171311620103761600575276888174972986650540} a^{19} + \frac{3721660653315842841203021684659633666140591661}{69640068524648041504640230110755269989194660216} a^{18} - \frac{4342704638414216542526654259480849062595980049}{69640068524648041504640230110755269989194660216} a^{17} + \frac{13069425583427538513703404266935272013569312307}{174100171311620103761600575276888174972986650540} a^{16} + \frac{69199626258157135088055258659652562731601843}{2024420596646745392576750875312653197360309890} a^{15} - \frac{3325010964967540772741582433901162432737030984}{43525042827905025940400143819222043743246662635} a^{14} - \frac{6130713561116078991231031370216989031044493539}{87050085655810051880800287638444087486493325270} a^{13} + \frac{10561427683353315546267498407390219297675938363}{174100171311620103761600575276888174972986650540} a^{12} + \frac{21369379350595089965593463181149324211442870113}{174100171311620103761600575276888174972986650540} a^{11} - \frac{3437549497531763324548541010751513067051109758}{43525042827905025940400143819222043743246662635} a^{10} - \frac{2016135593221004868515107053651625597341395907}{87050085655810051880800287638444087486493325270} a^{9} - \frac{2876365187412158247651957454888185452692566065}{17410017131162010376160057527688817497298665054} a^{8} + \frac{6995997770124513677884751017062685877990090394}{43525042827905025940400143819222043743246662635} a^{7} - \frac{8032219182752105827857074243771094751060536104}{43525042827905025940400143819222043743246662635} a^{6} + \frac{8078101135809942922774307866590764731044531314}{43525042827905025940400143819222043743246662635} a^{5} + \frac{6767401851561085206941196848825041846529956848}{43525042827905025940400143819222043743246662635} a^{4} - \frac{5294127827378383845083710951225345011466935146}{43525042827905025940400143819222043743246662635} a^{3} + \frac{14865896918168040328287842461222580929854973307}{43525042827905025940400143819222043743246662635} a^{2} + \frac{7758628059868012736144189641826211442708787214}{43525042827905025940400143819222043743246662635} a - \frac{9896110057350528608431883568131350847195004609}{43525042827905025940400143819222043743246662635}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16857324277000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 44 conjugacy class representatives for t22n34 |
| Character table for t22n34 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | $20{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ |
| 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ | |