Normalized defining polynomial
\( x^{22} - x^{21} - 30 x^{20} + 35 x^{19} + 265 x^{18} - 687 x^{17} + 357 x^{16} + 7305 x^{15} + \cdots + 6985 \)
Invariants
| Degree: | $22$ |
| |
| Signature: | $[12, 5]$ |
| |
| Discriminant: |
\(-61117859389674098630012726211547851562500\)
\(\medspace = -\,2^{2}\cdot 3^{20}\cdot 5^{20}\cdot 11^{16}\)
|
| |
| Root discriminant: | \(71.44\) |
| |
| Galois root discriminant: | $2\cdot 3^{10/11}5^{10/11}11^{4/5}\approx 159.70481706565957$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\), \(11\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-1}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3}a^{11}+\frac{1}{3}a^{10}+\frac{1}{3}a^{9}-\frac{1}{3}a^{2}-\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{6}a^{12}-\frac{1}{6}a^{11}-\frac{1}{6}a^{10}-\frac{1}{3}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{4}+\frac{1}{3}a^{3}+\frac{1}{6}a^{2}+\frac{1}{6}a-\frac{1}{6}$, $\frac{1}{6}a^{13}-\frac{1}{6}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{5}-\frac{1}{6}a^{4}-\frac{1}{2}a^{3}-\frac{1}{3}a-\frac{1}{2}$, $\frac{1}{6}a^{14}-\frac{1}{6}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{6}-\frac{1}{6}a^{5}-\frac{1}{2}a^{4}-\frac{1}{3}a^{2}-\frac{1}{2}a$, $\frac{1}{6}a^{15}+\frac{1}{3}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{6}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a+\frac{1}{6}$, $\frac{1}{6}a^{16}+\frac{1}{3}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{6}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{2}+\frac{1}{6}a$, $\frac{1}{660}a^{17}+\frac{7}{330}a^{16}+\frac{7}{132}a^{15}-\frac{3}{44}a^{14}+\frac{7}{132}a^{13}-\frac{31}{660}a^{12}+\frac{19}{165}a^{11}-\frac{5}{66}a^{10}-\frac{25}{132}a^{9}+\frac{17}{66}a^{8}-\frac{4}{33}a^{7}+\frac{17}{132}a^{6}-\frac{13}{44}a^{5}-\frac{1}{6}a^{4}-\frac{1}{6}a^{3}+\frac{1}{6}a^{2}-\frac{1}{12}a-\frac{1}{12}$, $\frac{1}{660}a^{18}-\frac{17}{220}a^{16}+\frac{1}{44}a^{15}+\frac{1}{132}a^{14}+\frac{29}{660}a^{13}-\frac{2}{33}a^{12}+\frac{8}{55}a^{11}+\frac{9}{44}a^{10}+\frac{8}{33}a^{9}+\frac{3}{11}a^{8}+\frac{7}{44}a^{7}-\frac{19}{44}a^{6}+\frac{31}{66}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{4}a^{2}+\frac{1}{4}a+\frac{1}{3}$, $\frac{1}{660}a^{19}-\frac{41}{660}a^{16}+\frac{1}{22}a^{15}+\frac{1}{15}a^{14}-\frac{1}{44}a^{13}-\frac{1}{12}a^{12}+\frac{17}{220}a^{11}-\frac{19}{66}a^{10}-\frac{17}{44}a^{9}+\frac{13}{44}a^{8}-\frac{59}{132}a^{7}-\frac{13}{44}a^{6}+\frac{35}{132}a^{5}-\frac{1}{2}a^{4}+\frac{1}{12}a^{3}-\frac{1}{4}a^{2}+\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{660}a^{20}+\frac{9}{110}a^{16}+\frac{49}{660}a^{15}+\frac{1}{66}a^{14}-\frac{5}{66}a^{13}-\frac{1}{66}a^{12}+\frac{1}{10}a^{11}+\frac{1}{132}a^{10}+\frac{4}{11}a^{9}+\frac{5}{44}a^{8}+\frac{3}{44}a^{7}-\frac{19}{66}a^{6}+\frac{7}{132}a^{5}-\frac{1}{12}a^{4}+\frac{1}{12}a^{3}+\frac{5}{12}a^{2}-\frac{1}{6}a-\frac{1}{4}$, $\frac{1}{20\cdots 20}a^{21}-\frac{10\cdots 11}{23\cdots 80}a^{20}+\frac{42\cdots 29}{69\cdots 40}a^{19}+\frac{95\cdots 89}{20\cdots 20}a^{18}+\frac{37\cdots 79}{34\cdots 70}a^{17}-\frac{53\cdots 01}{69\cdots 40}a^{16}+\frac{16\cdots 49}{34\cdots 70}a^{15}+\frac{38\cdots 31}{69\cdots 40}a^{14}+\frac{37\cdots 03}{17\cdots 85}a^{13}-\frac{11\cdots 79}{20\cdots 20}a^{12}+\frac{43\cdots 97}{34\cdots 70}a^{11}-\frac{12\cdots 56}{34\cdots 77}a^{10}-\frac{28\cdots 95}{20\cdots 62}a^{9}+\frac{44\cdots 91}{13\cdots 08}a^{8}+\frac{49\cdots 71}{13\cdots 08}a^{7}-\frac{26\cdots 23}{12\cdots 28}a^{6}-\frac{31\cdots 27}{12\cdots 28}a^{5}-\frac{25\cdots 69}{63\cdots 14}a^{4}+\frac{14\cdots 65}{38\cdots 84}a^{3}+\frac{13\cdots 09}{12\cdots 28}a^{2}-\frac{12\cdots 33}{42\cdots 76}a+\frac{37\cdots 01}{19\cdots 42}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $16$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{46\cdots 51}{52\cdots 55}a^{21}-\frac{21\cdots 31}{34\cdots 77}a^{20}-\frac{18\cdots 67}{69\cdots 40}a^{19}+\frac{24\cdots 69}{10\cdots 10}a^{18}+\frac{14\cdots 46}{58\cdots 95}a^{17}-\frac{12\cdots 09}{23\cdots 80}a^{16}+\frac{36\cdots 53}{23\cdots 18}a^{15}+\frac{22\cdots 91}{34\cdots 70}a^{14}-\frac{10\cdots 31}{69\cdots 40}a^{13}-\frac{75\cdots 41}{20\cdots 20}a^{12}+\frac{57\cdots 39}{69\cdots 40}a^{11}+\frac{53\cdots 15}{69\cdots 54}a^{10}-\frac{69\cdots 95}{41\cdots 24}a^{9}+\frac{45\cdots 57}{46\cdots 36}a^{8}-\frac{13\cdots 09}{46\cdots 36}a^{7}-\frac{27\cdots 17}{46\cdots 36}a^{6}+\frac{78\cdots 19}{13\cdots 08}a^{5}+\frac{36\cdots 07}{63\cdots 14}a^{4}-\frac{22\cdots 35}{38\cdots 84}a^{3}-\frac{12\cdots 35}{42\cdots 76}a^{2}+\frac{48\cdots 29}{42\cdots 76}a-\frac{81\cdots 87}{38\cdots 84}$, $\frac{11\cdots 09}{20\cdots 20}a^{21}-\frac{25\cdots 27}{69\cdots 40}a^{20}-\frac{10\cdots 63}{63\cdots 14}a^{19}+\frac{14\cdots 13}{10\cdots 10}a^{18}+\frac{78\cdots 67}{52\cdots 45}a^{17}-\frac{15\cdots 95}{46\cdots 36}a^{16}+\frac{62\cdots 37}{69\cdots 40}a^{15}+\frac{46\cdots 30}{11\cdots 59}a^{14}-\frac{51\cdots 11}{58\cdots 95}a^{13}-\frac{10\cdots 83}{47\cdots 05}a^{12}+\frac{34\cdots 87}{69\cdots 40}a^{11}+\frac{59\cdots 55}{12\cdots 28}a^{10}-\frac{37\cdots 23}{38\cdots 84}a^{9}+\frac{13\cdots 17}{23\cdots 18}a^{8}-\frac{78\cdots 11}{46\cdots 36}a^{7}-\frac{49\cdots 31}{13\cdots 08}a^{6}+\frac{38\cdots 67}{11\cdots 59}a^{5}+\frac{75\cdots 81}{21\cdots 38}a^{4}-\frac{32\cdots 77}{95\cdots 21}a^{3}-\frac{87\cdots 93}{42\cdots 76}a^{2}+\frac{85\cdots 99}{12\cdots 28}a-\frac{46\cdots 61}{38\cdots 84}$, $\frac{10\cdots 37}{69\cdots 40}a^{21}-\frac{47\cdots 77}{69\cdots 54}a^{20}-\frac{81\cdots 21}{17\cdots 85}a^{19}+\frac{19\cdots 39}{69\cdots 40}a^{18}+\frac{90\cdots 23}{21\cdots 80}a^{17}-\frac{28\cdots 49}{34\cdots 70}a^{16}+\frac{31\cdots 04}{34\cdots 77}a^{15}+\frac{39\cdots 37}{34\cdots 70}a^{14}-\frac{39\cdots 86}{17\cdots 85}a^{13}-\frac{15\cdots 63}{23\cdots 80}a^{12}+\frac{85\cdots 91}{69\cdots 40}a^{11}+\frac{20\cdots 97}{12\cdots 28}a^{10}-\frac{25\cdots 74}{10\cdots 69}a^{9}+\frac{55\cdots 67}{46\cdots 36}a^{8}-\frac{43\cdots 01}{13\cdots 08}a^{7}-\frac{14\cdots 81}{13\cdots 08}a^{6}+\frac{24\cdots 01}{34\cdots 77}a^{5}+\frac{14\cdots 23}{12\cdots 28}a^{4}-\frac{88\cdots 47}{12\cdots 28}a^{3}-\frac{62\cdots 59}{42\cdots 76}a^{2}+\frac{57\cdots 09}{42\cdots 76}a-\frac{23\cdots 55}{12\cdots 28}$, $\frac{31\cdots 47}{20\cdots 20}a^{21}-\frac{13\cdots 97}{13\cdots 08}a^{20}-\frac{10\cdots 27}{23\cdots 80}a^{19}+\frac{14\cdots 07}{38\cdots 84}a^{18}+\frac{56\cdots 49}{13\cdots 08}a^{17}-\frac{61\cdots 87}{69\cdots 40}a^{16}+\frac{32\cdots 71}{13\cdots 08}a^{15}+\frac{38\cdots 63}{34\cdots 70}a^{14}-\frac{10\cdots 47}{42\cdots 76}a^{13}-\frac{12\cdots 23}{20\cdots 62}a^{12}+\frac{15\cdots 43}{11\cdots 90}a^{11}+\frac{45\cdots 49}{34\cdots 77}a^{10}-\frac{11\cdots 31}{41\cdots 24}a^{9}+\frac{21\cdots 93}{13\cdots 08}a^{8}-\frac{58\cdots 55}{13\cdots 08}a^{7}-\frac{34\cdots 95}{34\cdots 77}a^{6}+\frac{62\cdots 39}{69\cdots 54}a^{5}+\frac{10\cdots 06}{10\cdots 69}a^{4}-\frac{36\cdots 51}{38\cdots 84}a^{3}-\frac{73\cdots 97}{12\cdots 28}a^{2}+\frac{11\cdots 47}{63\cdots 14}a-\frac{12\cdots 05}{38\cdots 84}$, $\frac{33\cdots 51}{11\cdots 90}a^{21}-\frac{14\cdots 77}{69\cdots 40}a^{20}-\frac{15\cdots 97}{17\cdots 85}a^{19}+\frac{48\cdots 81}{63\cdots 40}a^{18}+\frac{54\cdots 09}{69\cdots 40}a^{17}-\frac{12\cdots 17}{69\cdots 40}a^{16}+\frac{36\cdots 37}{69\cdots 40}a^{15}+\frac{66\cdots 39}{31\cdots 70}a^{14}-\frac{16\cdots 83}{34\cdots 70}a^{13}-\frac{73\cdots 09}{63\cdots 40}a^{12}+\frac{41\cdots 54}{15\cdots 35}a^{11}+\frac{84\cdots 77}{34\cdots 77}a^{10}-\frac{74\cdots 81}{13\cdots 08}a^{9}+\frac{44\cdots 61}{13\cdots 08}a^{8}-\frac{65\cdots 31}{69\cdots 54}a^{7}-\frac{59\cdots 05}{31\cdots 07}a^{6}+\frac{12\cdots 21}{69\cdots 54}a^{5}+\frac{23\cdots 77}{12\cdots 28}a^{4}-\frac{24\cdots 91}{12\cdots 28}a^{3}-\frac{16\cdots 75}{21\cdots 38}a^{2}+\frac{39\cdots 60}{10\cdots 69}a-\frac{74\cdots 58}{10\cdots 69}$, $\frac{10\cdots 46}{52\cdots 55}a^{21}-\frac{81\cdots 19}{63\cdots 40}a^{20}-\frac{13\cdots 13}{23\cdots 80}a^{19}+\frac{10\cdots 69}{20\cdots 20}a^{18}+\frac{93\cdots 99}{17\cdots 85}a^{17}-\frac{20\cdots 48}{17\cdots 85}a^{16}+\frac{53\cdots 06}{17\cdots 85}a^{15}+\frac{30\cdots 03}{21\cdots 80}a^{14}-\frac{55\cdots 92}{17\cdots 85}a^{13}-\frac{16\cdots 53}{20\cdots 20}a^{12}+\frac{12\cdots 09}{69\cdots 40}a^{11}+\frac{54\cdots 89}{31\cdots 07}a^{10}-\frac{14\cdots 65}{41\cdots 24}a^{9}+\frac{14\cdots 05}{69\cdots 54}a^{8}-\frac{81\cdots 11}{13\cdots 08}a^{7}-\frac{45\cdots 34}{34\cdots 77}a^{6}+\frac{13\cdots 64}{11\cdots 59}a^{5}+\frac{16\cdots 95}{12\cdots 28}a^{4}-\frac{23\cdots 33}{19\cdots 42}a^{3}-\frac{36\cdots 91}{42\cdots 76}a^{2}+\frac{75\cdots 48}{31\cdots 07}a-\frac{40\cdots 07}{95\cdots 21}$, $\frac{13\cdots 97}{52\cdots 55}a^{21}-\frac{42\cdots 99}{23\cdots 80}a^{20}-\frac{16\cdots 13}{21\cdots 80}a^{19}+\frac{71\cdots 37}{10\cdots 10}a^{18}+\frac{32\cdots 41}{46\cdots 36}a^{17}-\frac{10\cdots 39}{69\cdots 40}a^{16}+\frac{82\cdots 53}{17\cdots 85}a^{15}+\frac{13\cdots 69}{69\cdots 40}a^{14}-\frac{22\cdots 19}{52\cdots 45}a^{13}-\frac{21\cdots 41}{20\cdots 62}a^{12}+\frac{55\cdots 91}{23\cdots 80}a^{11}+\frac{30\cdots 75}{13\cdots 08}a^{10}-\frac{91\cdots 79}{19\cdots 42}a^{9}+\frac{33\cdots 51}{11\cdots 59}a^{8}-\frac{58\cdots 47}{69\cdots 54}a^{7}-\frac{59\cdots 05}{34\cdots 77}a^{6}+\frac{22\cdots 83}{13\cdots 08}a^{5}+\frac{70\cdots 09}{42\cdots 76}a^{4}-\frac{16\cdots 23}{95\cdots 21}a^{3}-\frac{15\cdots 17}{21\cdots 38}a^{2}+\frac{21\cdots 33}{63\cdots 14}a-\frac{24\cdots 51}{38\cdots 84}$, $\frac{11\cdots 21}{15\cdots 35}a^{21}-\frac{22\cdots 79}{58\cdots 95}a^{20}-\frac{29\cdots 11}{13\cdots 08}a^{19}+\frac{51\cdots 63}{34\cdots 70}a^{18}+\frac{33\cdots 36}{17\cdots 85}a^{17}-\frac{55\cdots 41}{13\cdots 08}a^{16}+\frac{41\cdots 94}{58\cdots 95}a^{15}+\frac{60\cdots 69}{11\cdots 59}a^{14}-\frac{25\cdots 67}{23\cdots 80}a^{13}-\frac{70\cdots 43}{23\cdots 80}a^{12}+\frac{41\cdots 71}{69\cdots 40}a^{11}+\frac{23\cdots 02}{34\cdots 77}a^{10}-\frac{16\cdots 63}{13\cdots 08}a^{9}+\frac{87\cdots 31}{13\cdots 08}a^{8}-\frac{21\cdots 33}{12\cdots 28}a^{7}-\frac{19\cdots 61}{42\cdots 76}a^{6}+\frac{17\cdots 37}{46\cdots 36}a^{5}+\frac{10\cdots 41}{21\cdots 38}a^{4}-\frac{47\cdots 63}{12\cdots 28}a^{3}-\frac{69\cdots 05}{12\cdots 28}a^{2}+\frac{30\cdots 33}{42\cdots 76}a-\frac{14\cdots 75}{12\cdots 28}$, $\frac{18\cdots 32}{52\cdots 55}a^{21}-\frac{16\cdots 01}{69\cdots 40}a^{20}-\frac{24\cdots 83}{23\cdots 80}a^{19}+\frac{16\cdots 93}{19\cdots 20}a^{18}+\frac{66\cdots 03}{69\cdots 40}a^{17}-\frac{72\cdots 83}{34\cdots 70}a^{16}+\frac{37\cdots 81}{69\cdots 40}a^{15}+\frac{44\cdots 56}{17\cdots 85}a^{14}-\frac{13\cdots 17}{23\cdots 80}a^{13}-\frac{15\cdots 57}{10\cdots 10}a^{12}+\frac{43\cdots 49}{13\cdots 08}a^{11}+\frac{21\cdots 03}{69\cdots 54}a^{10}-\frac{13\cdots 95}{20\cdots 62}a^{9}+\frac{12\cdots 68}{34\cdots 77}a^{8}-\frac{14\cdots 77}{13\cdots 08}a^{7}-\frac{32\cdots 57}{13\cdots 08}a^{6}+\frac{29\cdots 85}{13\cdots 08}a^{5}+\frac{98\cdots 95}{42\cdots 76}a^{4}-\frac{41\cdots 47}{19\cdots 42}a^{3}-\frac{65\cdots 65}{42\cdots 76}a^{2}+\frac{54\cdots 33}{12\cdots 28}a-\frac{29\cdots 33}{38\cdots 84}$, $\frac{45\cdots 13}{69\cdots 40}a^{21}-\frac{16\cdots 83}{58\cdots 95}a^{20}-\frac{12\cdots 53}{63\cdots 40}a^{19}+\frac{82\cdots 47}{69\cdots 40}a^{18}+\frac{12\cdots 53}{69\cdots 40}a^{17}-\frac{73\cdots 59}{21\cdots 80}a^{16}+\frac{14\cdots 83}{34\cdots 70}a^{15}+\frac{16\cdots 99}{34\cdots 70}a^{14}-\frac{65\cdots 47}{69\cdots 40}a^{13}-\frac{29\cdots 83}{10\cdots 90}a^{12}+\frac{81\cdots 66}{15\cdots 35}a^{11}+\frac{91\cdots 79}{13\cdots 08}a^{10}-\frac{13\cdots 17}{13\cdots 08}a^{9}+\frac{17\cdots 78}{34\cdots 77}a^{8}-\frac{31\cdots 49}{23\cdots 18}a^{7}-\frac{14\cdots 59}{34\cdots 77}a^{6}+\frac{41\cdots 11}{13\cdots 08}a^{5}+\frac{58\cdots 07}{12\cdots 28}a^{4}-\frac{18\cdots 49}{63\cdots 14}a^{3}-\frac{37\cdots 05}{63\cdots 14}a^{2}+\frac{12\cdots 53}{21\cdots 38}a-\frac{17\cdots 35}{21\cdots 38}$, $\frac{40\cdots 24}{52\cdots 55}a^{21}-\frac{97\cdots 93}{17\cdots 85}a^{20}-\frac{16\cdots 83}{69\cdots 54}a^{19}+\frac{43\cdots 49}{20\cdots 20}a^{18}+\frac{37\cdots 52}{17\cdots 85}a^{17}-\frac{33\cdots 33}{69\cdots 40}a^{16}+\frac{99\cdots 97}{69\cdots 40}a^{15}+\frac{80\cdots 73}{13\cdots 08}a^{14}-\frac{90\cdots 23}{69\cdots 40}a^{13}-\frac{33\cdots 47}{10\cdots 10}a^{12}+\frac{12\cdots 34}{17\cdots 85}a^{11}+\frac{30\cdots 57}{46\cdots 36}a^{10}-\frac{30\cdots 77}{20\cdots 62}a^{9}+\frac{30\cdots 06}{34\cdots 77}a^{8}-\frac{34\cdots 81}{13\cdots 08}a^{7}-\frac{65\cdots 31}{12\cdots 28}a^{6}+\frac{15\cdots 54}{31\cdots 07}a^{5}+\frac{32\cdots 33}{63\cdots 14}a^{4}-\frac{10\cdots 81}{19\cdots 42}a^{3}-\frac{27\cdots 31}{12\cdots 28}a^{2}+\frac{13\cdots 43}{12\cdots 28}a-\frac{36\cdots 85}{19\cdots 42}$, $\frac{96\cdots 79}{69\cdots 40}a^{21}-\frac{46\cdots 91}{69\cdots 54}a^{20}-\frac{29\cdots 39}{69\cdots 40}a^{19}+\frac{85\cdots 77}{31\cdots 70}a^{18}+\frac{44\cdots 21}{11\cdots 90}a^{17}-\frac{26\cdots 17}{34\cdots 70}a^{16}+\frac{25\cdots 43}{23\cdots 18}a^{15}+\frac{35\cdots 37}{34\cdots 70}a^{14}-\frac{14\cdots 69}{69\cdots 40}a^{13}-\frac{41\cdots 31}{69\cdots 40}a^{12}+\frac{26\cdots 95}{23\cdots 18}a^{11}+\frac{43\cdots 38}{31\cdots 07}a^{10}-\frac{76\cdots 88}{34\cdots 77}a^{9}+\frac{13\cdots 72}{11\cdots 59}a^{8}-\frac{40\cdots 75}{12\cdots 28}a^{7}-\frac{21\cdots 01}{23\cdots 18}a^{6}+\frac{23\cdots 03}{34\cdots 77}a^{5}+\frac{12\cdots 87}{12\cdots 28}a^{4}-\frac{21\cdots 34}{31\cdots 07}a^{3}-\frac{14\cdots 73}{12\cdots 28}a^{2}+\frac{13\cdots 93}{10\cdots 69}a-\frac{25\cdots 93}{12\cdots 28}$, $\frac{42\cdots 59}{69\cdots 40}a^{21}-\frac{11\cdots 59}{34\cdots 70}a^{20}-\frac{19\cdots 27}{10\cdots 90}a^{19}+\frac{42\cdots 21}{31\cdots 70}a^{18}+\frac{38\cdots 89}{23\cdots 80}a^{17}-\frac{23\cdots 47}{69\cdots 40}a^{16}+\frac{16\cdots 71}{23\cdots 80}a^{15}+\frac{30\cdots 47}{69\cdots 40}a^{14}-\frac{65\cdots 27}{69\cdots 40}a^{13}-\frac{17\cdots 57}{69\cdots 40}a^{12}+\frac{11\cdots 61}{23\cdots 80}a^{11}+\frac{65\cdots 91}{11\cdots 59}a^{10}-\frac{71\cdots 11}{69\cdots 54}a^{9}+\frac{26\cdots 73}{46\cdots 36}a^{8}-\frac{51\cdots 98}{31\cdots 07}a^{7}-\frac{92\cdots 31}{23\cdots 18}a^{6}+\frac{11\cdots 91}{34\cdots 77}a^{5}+\frac{52\cdots 85}{12\cdots 28}a^{4}-\frac{42\cdots 67}{12\cdots 28}a^{3}-\frac{12\cdots 10}{31\cdots 07}a^{2}+\frac{67\cdots 60}{10\cdots 69}a-\frac{12\cdots 67}{12\cdots 28}$, $\frac{23\cdots 27}{19\cdots 20}a^{21}-\frac{27\cdots 70}{34\cdots 77}a^{20}-\frac{51\cdots 33}{13\cdots 08}a^{19}+\frac{61\cdots 99}{20\cdots 20}a^{18}+\frac{38\cdots 69}{11\cdots 90}a^{17}-\frac{99\cdots 49}{13\cdots 08}a^{16}+\frac{26\cdots 35}{13\cdots 08}a^{15}+\frac{12\cdots 55}{13\cdots 08}a^{14}-\frac{34\cdots 67}{17\cdots 85}a^{13}-\frac{10\cdots 17}{20\cdots 20}a^{12}+\frac{18\cdots 04}{17\cdots 85}a^{11}+\frac{15\cdots 87}{13\cdots 08}a^{10}-\frac{22\cdots 77}{10\cdots 31}a^{9}+\frac{13\cdots 32}{10\cdots 69}a^{8}-\frac{12\cdots 55}{34\cdots 77}a^{7}-\frac{11\cdots 55}{13\cdots 08}a^{6}+\frac{49\cdots 09}{69\cdots 54}a^{5}+\frac{10\cdots 79}{12\cdots 28}a^{4}-\frac{70\cdots 89}{95\cdots 21}a^{3}-\frac{10\cdots 03}{21\cdots 38}a^{2}+\frac{61\cdots 63}{42\cdots 76}a-\frac{10\cdots 23}{38\cdots 84}$, $\frac{12\cdots 61}{20\cdots 20}a^{21}-\frac{25\cdots 97}{69\cdots 40}a^{20}-\frac{41\cdots 97}{23\cdots 80}a^{19}+\frac{28\cdots 51}{20\cdots 20}a^{18}+\frac{55\cdots 07}{34\cdots 70}a^{17}-\frac{78\cdots 99}{23\cdots 80}a^{16}+\frac{91\cdots 87}{11\cdots 90}a^{15}+\frac{29\cdots 41}{69\cdots 40}a^{14}-\frac{16\cdots 93}{17\cdots 85}a^{13}-\frac{51\cdots 37}{20\cdots 20}a^{12}+\frac{59\cdots 28}{11\cdots 59}a^{11}+\frac{12\cdots 33}{23\cdots 18}a^{10}-\frac{21\cdots 81}{20\cdots 62}a^{9}+\frac{78\cdots 07}{13\cdots 08}a^{8}-\frac{79\cdots 05}{46\cdots 36}a^{7}-\frac{17\cdots 93}{46\cdots 36}a^{6}+\frac{46\cdots 25}{13\cdots 08}a^{5}+\frac{12\cdots 58}{31\cdots 07}a^{4}-\frac{12\cdots 05}{38\cdots 84}a^{3}-\frac{43\cdots 73}{12\cdots 28}a^{2}+\frac{27\cdots 91}{42\cdots 76}a-\frac{10\cdots 29}{95\cdots 21}$, $\frac{10\cdots 93}{69\cdots 40}a^{21}-\frac{36\cdots 21}{69\cdots 40}a^{20}-\frac{14\cdots 92}{31\cdots 07}a^{19}+\frac{53\cdots 77}{23\cdots 80}a^{18}+\frac{14\cdots 61}{34\cdots 70}a^{17}-\frac{26\cdots 69}{34\cdots 70}a^{16}+\frac{96\cdots 83}{34\cdots 70}a^{15}+\frac{50\cdots 75}{46\cdots 36}a^{14}-\frac{48\cdots 57}{23\cdots 80}a^{13}-\frac{23\cdots 91}{34\cdots 70}a^{12}+\frac{51\cdots 53}{46\cdots 36}a^{11}+\frac{37\cdots 15}{23\cdots 18}a^{10}-\frac{29\cdots 05}{13\cdots 08}a^{9}+\frac{68\cdots 91}{69\cdots 54}a^{8}-\frac{84\cdots 74}{34\cdots 77}a^{7}-\frac{34\cdots 31}{34\cdots 77}a^{6}+\frac{68\cdots 65}{11\cdots 59}a^{5}+\frac{11\cdots 54}{10\cdots 69}a^{4}-\frac{36\cdots 53}{63\cdots 14}a^{3}-\frac{54\cdots 63}{31\cdots 07}a^{2}+\frac{34\cdots 20}{31\cdots 07}a-\frac{15\cdots 69}{12\cdots 28}$
|
| |
| Regulator: | \( 16318467350200 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{5}\cdot 16318467350200 \cdot 1}{2\cdot\sqrt{61117859389674098630012726211547851562500}}\cr\approx \mathstrut & 1.32380675698858 \end{aligned}\] (assuming GRH)
Galois group
$C_2^{10}.C_{11}:C_{10}$ (as 22T36):
| A solvable group of order 112640 |
| The 80 conjugacy class representatives for $C_2^{10}.C_{11}:C_{10}$ |
| Character table for $C_2^{10}.C_{11}:C_{10}$ |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 22 siblings: | data not computed |
| Degree 44 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/padicField/7.10.0.1}{10} }{,}\,{\href{/padicField/7.5.0.1}{5} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/13.10.0.1}{10} }{,}\,{\href{/padicField/13.5.0.1}{5} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.10.0.1}{10} }{,}\,{\href{/padicField/17.5.0.1}{5} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.10.0.1}{10} }{,}\,{\href{/padicField/19.5.0.1}{5} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | $22$ | ${\href{/padicField/29.5.0.1}{5} }^{4}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.5.0.1}{5} }^{4}{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.10.0.1}{10} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.10.0.1}{10} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | $22$ | ${\href{/padicField/47.10.0.1}{10} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.10.0.1}{10} }{,}\,{\href{/padicField/53.5.0.1}{5} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.5.0.1}{5} }^{4}{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.2a1.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ |
| 2.5.1.0a1.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | |
| 2.5.1.0a1.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | |
| 2.5.1.0a1.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | |
| 2.5.1.0a1.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | |
|
\(3\)
| 3.2.11.20a1.1 | $x^{22} + 22 x^{21} + 242 x^{20} + 1760 x^{19} + 9460 x^{18} + 39864 x^{17} + 136488 x^{16} + 388608 x^{15} + 934560 x^{14} + 1918400 x^{13} + 3384128 x^{12} + 5149696 x^{11} + 6768256 x^{10} + 7673600 x^{9} + 7476480 x^{8} + 6217728 x^{7} + 4367616 x^{6} + 2551296 x^{5} + 1210880 x^{4} + 450560 x^{3} + 123904 x^{2} + 22528 x + 2051$ | $11$ | $2$ | $20$ | 22T5 | $$[\ ]_{11}^{10}$$ |
|
\(5\)
| 5.1.11.10a1.1 | $x^{11} + 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $$[\ ]_{11}^{5}$$ |
| 5.1.11.10a1.1 | $x^{11} + 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $$[\ ]_{11}^{5}$$ | |
|
\(11\)
| $\Q_{11}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{11}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 11.1.5.4a1.1 | $x^{5} + 11$ | $5$ | $1$ | $4$ | $C_5$ | $$[\ ]_{5}$$ | |
| 11.1.5.4a1.1 | $x^{5} + 11$ | $5$ | $1$ | $4$ | $C_5$ | $$[\ ]_{5}$$ | |
| 11.2.5.8a1.2 | $x^{10} + 35 x^{9} + 500 x^{8} + 3710 x^{7} + 14985 x^{6} + 31367 x^{5} + 29970 x^{4} + 14840 x^{3} + 4000 x^{2} + 560 x + 43$ | $5$ | $2$ | $8$ | $C_{10}$ | $$[\ ]_{5}^{2}$$ |