Normalized defining polynomial
\( x^{22} - x^{21} - 30 x^{20} + 35 x^{19} + 265 x^{18} - 687 x^{17} + 357 x^{16} + 7305 x^{15} - 18675 x^{14} - 35840 x^{13} + 103856 x^{12} + 58224 x^{11} - 211240 x^{10} + 163795 x^{9} - 64050 x^{8} - 651165 x^{7} + 823710 x^{6} + 466155 x^{5} - 852830 x^{4} + 161150 x^{3} + 139095 x^{2} - 61765 x + 6985 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-61117859389674098630012726211547851562500=-\,2^{2}\cdot 3^{20}\cdot 5^{20}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{11} - \frac{1}{6} a^{10} - \frac{1}{3} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3} + \frac{1}{6} a^{2} + \frac{1}{6} a - \frac{1}{6}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{6} a^{14} - \frac{1}{6} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{6} a^{5} - \frac{1}{2} a^{4} - \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{15} + \frac{1}{3} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a + \frac{1}{6}$, $\frac{1}{6} a^{16} + \frac{1}{3} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{6} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} + \frac{1}{6} a$, $\frac{1}{660} a^{17} + \frac{7}{330} a^{16} + \frac{7}{132} a^{15} - \frac{3}{44} a^{14} + \frac{7}{132} a^{13} - \frac{31}{660} a^{12} + \frac{19}{165} a^{11} - \frac{5}{66} a^{10} - \frac{25}{132} a^{9} + \frac{17}{66} a^{8} - \frac{4}{33} a^{7} + \frac{17}{132} a^{6} - \frac{13}{44} a^{5} - \frac{1}{6} a^{4} - \frac{1}{6} a^{3} + \frac{1}{6} a^{2} - \frac{1}{12} a - \frac{1}{12}$, $\frac{1}{660} a^{18} - \frac{17}{220} a^{16} + \frac{1}{44} a^{15} + \frac{1}{132} a^{14} + \frac{29}{660} a^{13} - \frac{2}{33} a^{12} + \frac{8}{55} a^{11} + \frac{9}{44} a^{10} + \frac{8}{33} a^{9} + \frac{3}{11} a^{8} + \frac{7}{44} a^{7} - \frac{19}{44} a^{6} + \frac{31}{66} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{3}$, $\frac{1}{660} a^{19} - \frac{41}{660} a^{16} + \frac{1}{22} a^{15} + \frac{1}{15} a^{14} - \frac{1}{44} a^{13} - \frac{1}{12} a^{12} + \frac{17}{220} a^{11} - \frac{19}{66} a^{10} - \frac{17}{44} a^{9} + \frac{13}{44} a^{8} - \frac{59}{132} a^{7} - \frac{13}{44} a^{6} + \frac{35}{132} a^{5} - \frac{1}{2} a^{4} + \frac{1}{12} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{660} a^{20} + \frac{9}{110} a^{16} + \frac{49}{660} a^{15} + \frac{1}{66} a^{14} - \frac{5}{66} a^{13} - \frac{1}{66} a^{12} + \frac{1}{10} a^{11} + \frac{1}{132} a^{10} + \frac{4}{11} a^{9} + \frac{5}{44} a^{8} + \frac{3}{44} a^{7} - \frac{19}{66} a^{6} + \frac{7}{132} a^{5} - \frac{1}{12} a^{4} + \frac{1}{12} a^{3} + \frac{5}{12} a^{2} - \frac{1}{6} a - \frac{1}{4}$, $\frac{1}{20931840382371120693008255117671823266278526620} a^{21} - \frac{1022685716599574369586783309274043810016511}{2325760042485680077000917235296869251808725180} a^{20} + \frac{4247934871532398102341440834550333453266629}{6977280127457040231002751705890607755426175540} a^{19} + \frac{9548317779543106532746141138963019391092789}{20931840382371120693008255117671823266278526620} a^{18} + \frac{370141546681250345271085357175292099994579}{3488640063728520115501375852945303877713087770} a^{17} - \frac{532310456722102855940555335162964677199355101}{6977280127457040231002751705890607755426175540} a^{16} + \frac{163943733607334797187880910103351661433703249}{3488640063728520115501375852945303877713087770} a^{15} + \frac{381900417192261592140344538333828075637245731}{6977280127457040231002751705890607755426175540} a^{14} + \frac{37361794158870848950370606411268253629864803}{1744320031864260057750687926472651938856543885} a^{13} - \frac{1190487708123446703100357335152396449564288979}{20931840382371120693008255117671823266278526620} a^{12} + \frac{435346031027416007900792388628368566499586997}{3488640063728520115501375852945303877713087770} a^{11} - \frac{122650372521433777425951828311713172330688656}{348864006372852011550137585294530387771308777} a^{10} - \frac{288980810361906637552992871643319891040480495}{2093184038237112069300825511767182326627852662} a^{9} + \frac{443052292805899317483709773807340018564170791}{1395456025491408046200550341178121551085235108} a^{8} + \frac{498803668690580948784206143423384224380666371}{1395456025491408046200550341178121551085235108} a^{7} - \frac{26758533843939156454026734406272422963558123}{126859638681037095109140940107101959189566828} a^{6} - \frac{31076486389465271574994358217269245884914327}{126859638681037095109140940107101959189566828} a^{5} - \frac{25802649926908684177299868835318972268604969}{63429819340518547554570470053550979594783414} a^{4} + \frac{14856549883728525958023349431488320171858465}{380578916043111285327422820321305877568700484} a^{3} + \frac{13780216629932180760882234788337930475982009}{126859638681037095109140940107101959189566828} a^{2} - \frac{1295311895624120287441988686725136745852733}{42286546227012365036380313369033986396522276} a + \frac{37048203874025895466772937626741874711051301}{190289458021555642663711410160652938784350242}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16318467350200 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 80 conjugacy class representatives for t22n36 are not computed |
| Character table for t22n36 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |