Normalized defining polynomial
\( x^{22} - 5 x^{20} - 34 x^{18} + 42 x^{16} + 227 x^{14} - 96 x^{12} - 468 x^{10} + 59 x^{8} + 226 x^{6} + \cdots + 1 \)
Invariants
| Degree: | $22$ |
| |
| Signature: | $[12, 5]$ |
| |
| Discriminant: |
\(-56501459388151144478039723653407440896\)
\(\medspace = -\,2^{22}\cdot 1297^{10}\)
|
| |
| Root discriminant: | \(52.00\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(1297\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-1}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5}a^{14}-\frac{1}{5}a^{12}-\frac{2}{5}a^{10}-\frac{2}{5}a^{4}+\frac{2}{5}$, $\frac{1}{5}a^{15}-\frac{1}{5}a^{13}-\frac{2}{5}a^{11}-\frac{2}{5}a^{5}+\frac{2}{5}a$, $\frac{1}{5}a^{16}+\frac{2}{5}a^{12}-\frac{2}{5}a^{10}-\frac{2}{5}a^{6}-\frac{2}{5}a^{4}+\frac{2}{5}a^{2}+\frac{2}{5}$, $\frac{1}{5}a^{17}+\frac{2}{5}a^{13}-\frac{2}{5}a^{11}-\frac{2}{5}a^{7}-\frac{2}{5}a^{5}+\frac{2}{5}a^{3}+\frac{2}{5}a$, $\frac{1}{85}a^{18}-\frac{3}{85}a^{16}+\frac{2}{85}a^{14}+\frac{22}{85}a^{12}-\frac{19}{85}a^{10}+\frac{8}{85}a^{8}-\frac{26}{85}a^{6}+\frac{3}{85}a^{4}+\frac{41}{85}a^{2}+\frac{19}{85}$, $\frac{1}{85}a^{19}-\frac{3}{85}a^{17}+\frac{2}{85}a^{15}+\frac{22}{85}a^{13}-\frac{19}{85}a^{11}+\frac{8}{85}a^{9}-\frac{26}{85}a^{7}+\frac{3}{85}a^{5}+\frac{41}{85}a^{3}+\frac{19}{85}a$, $\frac{1}{5218235}a^{20}-\frac{4}{306955}a^{18}-\frac{364096}{5218235}a^{16}+\frac{39247}{5218235}a^{14}-\frac{15617}{1043647}a^{12}-\frac{2140706}{5218235}a^{10}+\frac{970239}{5218235}a^{8}-\frac{132086}{474385}a^{6}-\frac{2208233}{5218235}a^{4}+\frac{2339478}{5218235}a^{2}-\frac{1767671}{5218235}$, $\frac{1}{5218235}a^{21}-\frac{4}{306955}a^{19}-\frac{364096}{5218235}a^{17}+\frac{39247}{5218235}a^{15}-\frac{15617}{1043647}a^{13}-\frac{2140706}{5218235}a^{11}+\frac{970239}{5218235}a^{9}-\frac{132086}{474385}a^{7}-\frac{2208233}{5218235}a^{5}+\frac{2339478}{5218235}a^{3}-\frac{1767671}{5218235}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $16$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a$, $\frac{409225}{1043647}a^{21}-\frac{10092618}{5218235}a^{19}-\frac{14059319}{1043647}a^{17}+\frac{81517234}{5218235}a^{15}+\frac{471178966}{5218235}a^{13}-\frac{33884674}{1043647}a^{11}-\frac{976937179}{5218235}a^{9}+\frac{6821166}{474385}a^{7}+\frac{482845024}{5218235}a^{5}-\frac{98556686}{5218235}a^{3}-\frac{5625885}{1043647}a$, $\frac{409225}{1043647}a^{21}-\frac{10092618}{5218235}a^{19}-\frac{14059319}{1043647}a^{17}+\frac{81517234}{5218235}a^{15}+\frac{471178966}{5218235}a^{13}-\frac{33884674}{1043647}a^{11}-\frac{976937179}{5218235}a^{9}+\frac{6821166}{474385}a^{7}+\frac{482845024}{5218235}a^{5}-\frac{98556686}{5218235}a^{3}-\frac{4582238}{1043647}a$, $\frac{102584}{5218235}a^{20}-\frac{19984}{1043647}a^{18}-\frac{5357899}{5218235}a^{16}-\frac{2105635}{1043647}a^{14}+\frac{33054398}{5218235}a^{12}+\frac{1016102}{61391}a^{10}-\frac{35320473}{5218235}a^{8}-\frac{15449448}{474385}a^{6}-\frac{57176989}{5218235}a^{4}+\frac{33641106}{5218235}a^{2}+\frac{8481382}{5218235}$, $\frac{1130174}{5218235}a^{20}-\frac{5392708}{5218235}a^{18}-\frac{39650926}{5218235}a^{16}+\frac{38451379}{5218235}a^{14}+\frac{52904184}{1043647}a^{12}-\frac{49301226}{5218235}a^{10}-\frac{529512967}{5218235}a^{8}-\frac{4034183}{474385}a^{6}+\frac{212449694}{5218235}a^{4}-\frac{28761669}{5218235}a^{2}-\frac{1731217}{5218235}$, $\frac{312217}{5218235}a^{21}-\frac{1953982}{5218235}a^{19}-\frac{8577564}{5218235}a^{17}+\frac{26150956}{5218235}a^{15}+\frac{51636524}{5218235}a^{13}-\frac{117569711}{5218235}a^{11}-\frac{17938595}{1043647}a^{9}+\frac{18695234}{474385}a^{7}+\frac{12890198}{5218235}a^{5}-\frac{24096958}{1043647}a^{3}+\frac{1180191}{306955}a$, $\frac{621051}{5218235}a^{20}-\frac{551411}{1043647}a^{18}-\frac{22815356}{5218235}a^{16}+\frac{14255624}{5218235}a^{14}+\frac{152873058}{5218235}a^{12}+\frac{15723287}{5218235}a^{10}-\frac{302523627}{5218235}a^{8}-\frac{9781552}{474385}a^{6}+\frac{118323646}{5218235}a^{4}+\frac{21734764}{5218235}a^{2}-\frac{8193149}{5218235}$, $\frac{627027}{5218235}a^{20}-\frac{3531769}{5218235}a^{18}-\frac{3891345}{1043647}a^{16}+\frac{40373251}{5218235}a^{14}+\frac{130032637}{5218235}a^{12}-\frac{153488612}{5218235}a^{10}-\frac{283908276}{5218235}a^{8}+\frac{4030430}{94877}a^{6}+\frac{168873218}{5218235}a^{4}-\frac{102925041}{5218235}a^{2}+\frac{10048843}{5218235}$, $\frac{637250}{1043647}a^{21}-\frac{3060504}{1043647}a^{19}-\frac{111059208}{5218235}a^{17}+\frac{110430363}{5218235}a^{15}+\frac{735272201}{5218235}a^{13}-\frac{29743678}{1043647}a^{11}-\frac{291342987}{1043647}a^{9}-\frac{11065954}{474385}a^{7}+\frac{114290571}{1043647}a^{5}-\frac{63345856}{5218235}a^{3}+\frac{748756}{1043647}a$, $\frac{3891364}{5218235}a^{21}-\frac{19294316}{5218235}a^{19}-\frac{132674614}{5218235}a^{17}+\frac{155818054}{5218235}a^{15}+\frac{874505604}{5218235}a^{13}-\frac{322712682}{5218235}a^{11}-\frac{1733634681}{5218235}a^{9}+\frac{12872084}{474385}a^{7}+\frac{688280342}{5218235}a^{5}-\frac{201485611}{5218235}a^{3}+\frac{29337479}{5218235}a$, $\frac{771134}{474385}a^{21}-\frac{7741}{61391}a^{20}-\frac{3714982}{474385}a^{19}+\frac{2505972}{5218235}a^{18}-\frac{26861321}{474385}a^{17}+\frac{5202995}{1043647}a^{16}+\frac{27306902}{474385}a^{15}+\frac{125464}{5218235}a^{14}+\frac{178878827}{474385}a^{13}-\frac{171509539}{5218235}a^{12}-\frac{39849643}{474385}a^{11}-\frac{23493552}{1043647}a^{10}-\frac{360786299}{474385}a^{9}+\frac{310544796}{5218235}a^{8}-\frac{4701505}{94877}a^{7}+\frac{27585546}{474385}a^{6}+\frac{156249569}{474385}a^{5}-\frac{51516981}{5218235}a^{4}-\frac{12574127}{474385}a^{3}-\frac{80345896}{5218235}a^{2}-\frac{1074933}{94877}a-\frac{2024094}{1043647}$, $\frac{8552069}{5218235}a^{21}+\frac{5442203}{5218235}a^{20}-\frac{38782861}{5218235}a^{19}-\frac{24745429}{5218235}a^{18}-\frac{309167812}{5218235}a^{17}-\frac{196331873}{5218235}a^{16}+\frac{217116319}{5218235}a^{15}+\frac{140080196}{5218235}a^{14}+\frac{2054909453}{5218235}a^{13}+\frac{260341809}{1043647}a^{12}+\frac{122293449}{5218235}a^{11}+\frac{62567482}{5218235}a^{10}-\frac{4029112946}{5218235}a^{9}-\frac{2539603513}{5218235}a^{8}-\frac{24542812}{94877}a^{7}-\frac{74197373}{474385}a^{6}+\frac{1471234533}{5218235}a^{5}+\frac{53593163}{306955}a^{4}+\frac{228475273}{5218235}a^{3}+\frac{121261344}{5218235}a^{2}-\frac{43534692}{5218235}a-\frac{18498523}{5218235}$, $\frac{812272}{5218235}a^{21}-\frac{285887}{306955}a^{20}-\frac{3850229}{5218235}a^{19}+\frac{21995597}{5218235}a^{18}-\frac{28345354}{5218235}a^{17}+\frac{175612806}{5218235}a^{16}+\frac{25536578}{5218235}a^{15}-\frac{120536489}{5218235}a^{14}+\frac{181078762}{5218235}a^{13}-\frac{231677876}{1043647}a^{12}-\frac{25161283}{5218235}a^{11}-\frac{85173643}{5218235}a^{10}-\frac{321101336}{5218235}a^{9}+\frac{2222270994}{5218235}a^{8}-\frac{1815307}{474385}a^{7}+\frac{14044691}{94877}a^{6}+\frac{60222332}{5218235}a^{5}-\frac{142622476}{1043647}a^{4}-\frac{97240394}{5218235}a^{3}-\frac{79613218}{5218235}a^{2}-\frac{17196076}{5218235}a+\frac{10638996}{5218235}$, $\frac{180871}{306955}a^{21}-\frac{3085164}{5218235}a^{20}-\frac{13740714}{5218235}a^{19}+\frac{14076644}{5218235}a^{18}-\frac{22359417}{1043647}a^{17}+\frac{1306594}{61391}a^{16}+\frac{69296767}{5218235}a^{15}-\frac{16194485}{1043647}a^{14}+\frac{734510696}{5218235}a^{13}-\frac{736452506}{5218235}a^{12}+\frac{103827731}{5218235}a^{11}-\frac{27893281}{5218235}a^{10}-\frac{1384123516}{5218235}a^{9}+\frac{286982877}{1043647}a^{8}-\frac{10794619}{94877}a^{7}+\frac{40974928}{474385}a^{6}+\frac{384480706}{5218235}a^{5}-\frac{504372679}{5218235}a^{4}+\frac{93061399}{5218235}a^{3}-\frac{52471541}{5218235}a^{2}+\frac{2502041}{1043647}a+\frac{11913504}{5218235}$, $\frac{9909021}{5218235}a^{21}+\frac{9454}{474385}a^{20}-\frac{48177747}{5218235}a^{19}-\frac{866}{5581}a^{18}-\frac{343202966}{5218235}a^{17}-\frac{215778}{474385}a^{16}+\frac{73449939}{1043647}a^{15}+\frac{1400346}{474385}a^{14}+\frac{2287412527}{5218235}a^{13}+\frac{2014764}{474385}a^{12}-\frac{628315233}{5218235}a^{11}-\frac{7137429}{474385}a^{10}-\frac{4647933163}{5218235}a^{9}-\frac{7848768}{474385}a^{8}-\frac{4698168}{474385}a^{7}+\frac{2153360}{94877}a^{6}+\frac{2106915707}{5218235}a^{5}+\frac{10252137}{474385}a^{4}-\frac{51772464}{1043647}a^{3}-\frac{2862907}{474385}a^{2}-\frac{85997674}{5218235}a-\frac{2298779}{474385}$, $\frac{1820914}{306955}a^{21}+\frac{14539062}{5218235}a^{20}-\frac{149673234}{5218235}a^{19}-\frac{68712081}{5218235}a^{18}-\frac{215334928}{1043647}a^{17}-\frac{512686497}{5218235}a^{16}+\frac{1120334514}{5218235}a^{15}+\frac{468061529}{5218235}a^{14}+\frac{7193987573}{5218235}a^{13}+\frac{682346332}{1043647}a^{12}-\frac{354530710}{1043647}a^{11}-\frac{449095662}{5218235}a^{10}-\frac{14666507428}{5218235}a^{9}-\frac{6814162867}{5218235}a^{8}-\frac{54149009}{474385}a^{7}-\frac{90677667}{474385}a^{6}+\frac{6680047989}{5218235}a^{5}+\frac{2799468314}{5218235}a^{4}-\frac{116878880}{1043647}a^{3}-\frac{85184504}{5218235}a^{2}-\frac{280022636}{5218235}a-\frac{92107132}{5218235}$
|
| |
| Regulator: | \( 114972984549 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{5}\cdot 114972984549 \cdot 1}{2\cdot\sqrt{56501459388151144478039723653407440896}}\cr\approx \mathstrut & 0.306757554303413 \end{aligned}\] (assuming GRH)
Galois group
$C_2^{10}.D_{22}$ (as 22T32):
| A solvable group of order 45056 |
| The 200 conjugacy class representatives for $C_2^{10}.D_{22}$ |
| Character table for $C_2^{10}.D_{22}$ |
Intermediate fields
| 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 22 siblings: | data not computed |
| Degree 44 siblings: | data not computed |
| Minimal sibling: | 22.12.56501459388151144478039723653407440896.13 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $22$ | ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{6}{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ | $22$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{7}$ | ${\href{/padicField/13.11.0.1}{11} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{6}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | $22$ | $22$ | ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{9}$ | ${\href{/padicField/31.4.0.1}{4} }^{3}{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{9}$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{9}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{7}$ | $22$ | ${\href{/padicField/53.11.0.1}{11} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{3}{,}\,{\href{/padicField/59.2.0.1}{2} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.11.2.22a176.2 | $x^{22} + 2 x^{21} + 2 x^{20} + 2 x^{19} + 2 x^{17} + 2 x^{16} + 2 x^{15} + 4 x^{13} + 2 x^{12} + 6 x^{11} + 4 x^{10} + 2 x^{9} + 4 x^{8} + 2 x^{7} + 4 x^{6} + 2 x^{5} + 5 x^{4} + 6 x^{2} + 9$ | $2$ | $11$ | $22$ | not computed | not computed |
|
\(1297\)
| $\Q_{1297}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{1297}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $2$ | $2$ | $2$ |