Properties

Label 22.12.565...896.1
Degree $22$
Signature $[12, 5]$
Discriminant $-5.650\times 10^{37}$
Root discriminant \(52.00\)
Ramified primes $2,1297$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2^{10}.D_{22}$ (as 22T32)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^22 - 5*x^20 - 34*x^18 + 42*x^16 + 227*x^14 - 96*x^12 - 468*x^10 + 59*x^8 + 226*x^6 - 53*x^4 - 9*x^2 + 1)
 
Copy content gp:K = bnfinit(y^22 - 5*y^20 - 34*y^18 + 42*y^16 + 227*y^14 - 96*y^12 - 468*y^10 + 59*y^8 + 226*y^6 - 53*y^4 - 9*y^2 + 1, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^22 - 5*x^20 - 34*x^18 + 42*x^16 + 227*x^14 - 96*x^12 - 468*x^10 + 59*x^8 + 226*x^6 - 53*x^4 - 9*x^2 + 1);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^22 - 5*x^20 - 34*x^18 + 42*x^16 + 227*x^14 - 96*x^12 - 468*x^10 + 59*x^8 + 226*x^6 - 53*x^4 - 9*x^2 + 1)
 

\( x^{22} - 5 x^{20} - 34 x^{18} + 42 x^{16} + 227 x^{14} - 96 x^{12} - 468 x^{10} + 59 x^{8} + 226 x^{6} + \cdots + 1 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $22$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[12, 5]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(-56501459388151144478039723653407440896\) \(\medspace = -\,2^{22}\cdot 1297^{10}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(52.00\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(1297\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-1}) \)
$\Aut(K/\Q)$:   $C_2$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5}a^{14}-\frac{1}{5}a^{12}-\frac{2}{5}a^{10}-\frac{2}{5}a^{4}+\frac{2}{5}$, $\frac{1}{5}a^{15}-\frac{1}{5}a^{13}-\frac{2}{5}a^{11}-\frac{2}{5}a^{5}+\frac{2}{5}a$, $\frac{1}{5}a^{16}+\frac{2}{5}a^{12}-\frac{2}{5}a^{10}-\frac{2}{5}a^{6}-\frac{2}{5}a^{4}+\frac{2}{5}a^{2}+\frac{2}{5}$, $\frac{1}{5}a^{17}+\frac{2}{5}a^{13}-\frac{2}{5}a^{11}-\frac{2}{5}a^{7}-\frac{2}{5}a^{5}+\frac{2}{5}a^{3}+\frac{2}{5}a$, $\frac{1}{85}a^{18}-\frac{3}{85}a^{16}+\frac{2}{85}a^{14}+\frac{22}{85}a^{12}-\frac{19}{85}a^{10}+\frac{8}{85}a^{8}-\frac{26}{85}a^{6}+\frac{3}{85}a^{4}+\frac{41}{85}a^{2}+\frac{19}{85}$, $\frac{1}{85}a^{19}-\frac{3}{85}a^{17}+\frac{2}{85}a^{15}+\frac{22}{85}a^{13}-\frac{19}{85}a^{11}+\frac{8}{85}a^{9}-\frac{26}{85}a^{7}+\frac{3}{85}a^{5}+\frac{41}{85}a^{3}+\frac{19}{85}a$, $\frac{1}{5218235}a^{20}-\frac{4}{306955}a^{18}-\frac{364096}{5218235}a^{16}+\frac{39247}{5218235}a^{14}-\frac{15617}{1043647}a^{12}-\frac{2140706}{5218235}a^{10}+\frac{970239}{5218235}a^{8}-\frac{132086}{474385}a^{6}-\frac{2208233}{5218235}a^{4}+\frac{2339478}{5218235}a^{2}-\frac{1767671}{5218235}$, $\frac{1}{5218235}a^{21}-\frac{4}{306955}a^{19}-\frac{364096}{5218235}a^{17}+\frac{39247}{5218235}a^{15}-\frac{15617}{1043647}a^{13}-\frac{2140706}{5218235}a^{11}+\frac{970239}{5218235}a^{9}-\frac{132086}{474385}a^{7}-\frac{2208233}{5218235}a^{5}+\frac{2339478}{5218235}a^{3}-\frac{1767671}{5218235}a$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $16$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $a$, $\frac{409225}{1043647}a^{21}-\frac{10092618}{5218235}a^{19}-\frac{14059319}{1043647}a^{17}+\frac{81517234}{5218235}a^{15}+\frac{471178966}{5218235}a^{13}-\frac{33884674}{1043647}a^{11}-\frac{976937179}{5218235}a^{9}+\frac{6821166}{474385}a^{7}+\frac{482845024}{5218235}a^{5}-\frac{98556686}{5218235}a^{3}-\frac{5625885}{1043647}a$, $\frac{409225}{1043647}a^{21}-\frac{10092618}{5218235}a^{19}-\frac{14059319}{1043647}a^{17}+\frac{81517234}{5218235}a^{15}+\frac{471178966}{5218235}a^{13}-\frac{33884674}{1043647}a^{11}-\frac{976937179}{5218235}a^{9}+\frac{6821166}{474385}a^{7}+\frac{482845024}{5218235}a^{5}-\frac{98556686}{5218235}a^{3}-\frac{4582238}{1043647}a$, $\frac{102584}{5218235}a^{20}-\frac{19984}{1043647}a^{18}-\frac{5357899}{5218235}a^{16}-\frac{2105635}{1043647}a^{14}+\frac{33054398}{5218235}a^{12}+\frac{1016102}{61391}a^{10}-\frac{35320473}{5218235}a^{8}-\frac{15449448}{474385}a^{6}-\frac{57176989}{5218235}a^{4}+\frac{33641106}{5218235}a^{2}+\frac{8481382}{5218235}$, $\frac{1130174}{5218235}a^{20}-\frac{5392708}{5218235}a^{18}-\frac{39650926}{5218235}a^{16}+\frac{38451379}{5218235}a^{14}+\frac{52904184}{1043647}a^{12}-\frac{49301226}{5218235}a^{10}-\frac{529512967}{5218235}a^{8}-\frac{4034183}{474385}a^{6}+\frac{212449694}{5218235}a^{4}-\frac{28761669}{5218235}a^{2}-\frac{1731217}{5218235}$, $\frac{312217}{5218235}a^{21}-\frac{1953982}{5218235}a^{19}-\frac{8577564}{5218235}a^{17}+\frac{26150956}{5218235}a^{15}+\frac{51636524}{5218235}a^{13}-\frac{117569711}{5218235}a^{11}-\frac{17938595}{1043647}a^{9}+\frac{18695234}{474385}a^{7}+\frac{12890198}{5218235}a^{5}-\frac{24096958}{1043647}a^{3}+\frac{1180191}{306955}a$, $\frac{621051}{5218235}a^{20}-\frac{551411}{1043647}a^{18}-\frac{22815356}{5218235}a^{16}+\frac{14255624}{5218235}a^{14}+\frac{152873058}{5218235}a^{12}+\frac{15723287}{5218235}a^{10}-\frac{302523627}{5218235}a^{8}-\frac{9781552}{474385}a^{6}+\frac{118323646}{5218235}a^{4}+\frac{21734764}{5218235}a^{2}-\frac{8193149}{5218235}$, $\frac{627027}{5218235}a^{20}-\frac{3531769}{5218235}a^{18}-\frac{3891345}{1043647}a^{16}+\frac{40373251}{5218235}a^{14}+\frac{130032637}{5218235}a^{12}-\frac{153488612}{5218235}a^{10}-\frac{283908276}{5218235}a^{8}+\frac{4030430}{94877}a^{6}+\frac{168873218}{5218235}a^{4}-\frac{102925041}{5218235}a^{2}+\frac{10048843}{5218235}$, $\frac{637250}{1043647}a^{21}-\frac{3060504}{1043647}a^{19}-\frac{111059208}{5218235}a^{17}+\frac{110430363}{5218235}a^{15}+\frac{735272201}{5218235}a^{13}-\frac{29743678}{1043647}a^{11}-\frac{291342987}{1043647}a^{9}-\frac{11065954}{474385}a^{7}+\frac{114290571}{1043647}a^{5}-\frac{63345856}{5218235}a^{3}+\frac{748756}{1043647}a$, $\frac{3891364}{5218235}a^{21}-\frac{19294316}{5218235}a^{19}-\frac{132674614}{5218235}a^{17}+\frac{155818054}{5218235}a^{15}+\frac{874505604}{5218235}a^{13}-\frac{322712682}{5218235}a^{11}-\frac{1733634681}{5218235}a^{9}+\frac{12872084}{474385}a^{7}+\frac{688280342}{5218235}a^{5}-\frac{201485611}{5218235}a^{3}+\frac{29337479}{5218235}a$, $\frac{771134}{474385}a^{21}-\frac{7741}{61391}a^{20}-\frac{3714982}{474385}a^{19}+\frac{2505972}{5218235}a^{18}-\frac{26861321}{474385}a^{17}+\frac{5202995}{1043647}a^{16}+\frac{27306902}{474385}a^{15}+\frac{125464}{5218235}a^{14}+\frac{178878827}{474385}a^{13}-\frac{171509539}{5218235}a^{12}-\frac{39849643}{474385}a^{11}-\frac{23493552}{1043647}a^{10}-\frac{360786299}{474385}a^{9}+\frac{310544796}{5218235}a^{8}-\frac{4701505}{94877}a^{7}+\frac{27585546}{474385}a^{6}+\frac{156249569}{474385}a^{5}-\frac{51516981}{5218235}a^{4}-\frac{12574127}{474385}a^{3}-\frac{80345896}{5218235}a^{2}-\frac{1074933}{94877}a-\frac{2024094}{1043647}$, $\frac{8552069}{5218235}a^{21}+\frac{5442203}{5218235}a^{20}-\frac{38782861}{5218235}a^{19}-\frac{24745429}{5218235}a^{18}-\frac{309167812}{5218235}a^{17}-\frac{196331873}{5218235}a^{16}+\frac{217116319}{5218235}a^{15}+\frac{140080196}{5218235}a^{14}+\frac{2054909453}{5218235}a^{13}+\frac{260341809}{1043647}a^{12}+\frac{122293449}{5218235}a^{11}+\frac{62567482}{5218235}a^{10}-\frac{4029112946}{5218235}a^{9}-\frac{2539603513}{5218235}a^{8}-\frac{24542812}{94877}a^{7}-\frac{74197373}{474385}a^{6}+\frac{1471234533}{5218235}a^{5}+\frac{53593163}{306955}a^{4}+\frac{228475273}{5218235}a^{3}+\frac{121261344}{5218235}a^{2}-\frac{43534692}{5218235}a-\frac{18498523}{5218235}$, $\frac{812272}{5218235}a^{21}-\frac{285887}{306955}a^{20}-\frac{3850229}{5218235}a^{19}+\frac{21995597}{5218235}a^{18}-\frac{28345354}{5218235}a^{17}+\frac{175612806}{5218235}a^{16}+\frac{25536578}{5218235}a^{15}-\frac{120536489}{5218235}a^{14}+\frac{181078762}{5218235}a^{13}-\frac{231677876}{1043647}a^{12}-\frac{25161283}{5218235}a^{11}-\frac{85173643}{5218235}a^{10}-\frac{321101336}{5218235}a^{9}+\frac{2222270994}{5218235}a^{8}-\frac{1815307}{474385}a^{7}+\frac{14044691}{94877}a^{6}+\frac{60222332}{5218235}a^{5}-\frac{142622476}{1043647}a^{4}-\frac{97240394}{5218235}a^{3}-\frac{79613218}{5218235}a^{2}-\frac{17196076}{5218235}a+\frac{10638996}{5218235}$, $\frac{180871}{306955}a^{21}-\frac{3085164}{5218235}a^{20}-\frac{13740714}{5218235}a^{19}+\frac{14076644}{5218235}a^{18}-\frac{22359417}{1043647}a^{17}+\frac{1306594}{61391}a^{16}+\frac{69296767}{5218235}a^{15}-\frac{16194485}{1043647}a^{14}+\frac{734510696}{5218235}a^{13}-\frac{736452506}{5218235}a^{12}+\frac{103827731}{5218235}a^{11}-\frac{27893281}{5218235}a^{10}-\frac{1384123516}{5218235}a^{9}+\frac{286982877}{1043647}a^{8}-\frac{10794619}{94877}a^{7}+\frac{40974928}{474385}a^{6}+\frac{384480706}{5218235}a^{5}-\frac{504372679}{5218235}a^{4}+\frac{93061399}{5218235}a^{3}-\frac{52471541}{5218235}a^{2}+\frac{2502041}{1043647}a+\frac{11913504}{5218235}$, $\frac{9909021}{5218235}a^{21}+\frac{9454}{474385}a^{20}-\frac{48177747}{5218235}a^{19}-\frac{866}{5581}a^{18}-\frac{343202966}{5218235}a^{17}-\frac{215778}{474385}a^{16}+\frac{73449939}{1043647}a^{15}+\frac{1400346}{474385}a^{14}+\frac{2287412527}{5218235}a^{13}+\frac{2014764}{474385}a^{12}-\frac{628315233}{5218235}a^{11}-\frac{7137429}{474385}a^{10}-\frac{4647933163}{5218235}a^{9}-\frac{7848768}{474385}a^{8}-\frac{4698168}{474385}a^{7}+\frac{2153360}{94877}a^{6}+\frac{2106915707}{5218235}a^{5}+\frac{10252137}{474385}a^{4}-\frac{51772464}{1043647}a^{3}-\frac{2862907}{474385}a^{2}-\frac{85997674}{5218235}a-\frac{2298779}{474385}$, $\frac{1820914}{306955}a^{21}+\frac{14539062}{5218235}a^{20}-\frac{149673234}{5218235}a^{19}-\frac{68712081}{5218235}a^{18}-\frac{215334928}{1043647}a^{17}-\frac{512686497}{5218235}a^{16}+\frac{1120334514}{5218235}a^{15}+\frac{468061529}{5218235}a^{14}+\frac{7193987573}{5218235}a^{13}+\frac{682346332}{1043647}a^{12}-\frac{354530710}{1043647}a^{11}-\frac{449095662}{5218235}a^{10}-\frac{14666507428}{5218235}a^{9}-\frac{6814162867}{5218235}a^{8}-\frac{54149009}{474385}a^{7}-\frac{90677667}{474385}a^{6}+\frac{6680047989}{5218235}a^{5}+\frac{2799468314}{5218235}a^{4}-\frac{116878880}{1043647}a^{3}-\frac{85184504}{5218235}a^{2}-\frac{280022636}{5218235}a-\frac{92107132}{5218235}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 114972984549 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{5}\cdot 114972984549 \cdot 1}{2\cdot\sqrt{56501459388151144478039723653407440896}}\cr\approx \mathstrut & 0.306757554303413 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^22 - 5*x^20 - 34*x^18 + 42*x^16 + 227*x^14 - 96*x^12 - 468*x^10 + 59*x^8 + 226*x^6 - 53*x^4 - 9*x^2 + 1) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^22 - 5*x^20 - 34*x^18 + 42*x^16 + 227*x^14 - 96*x^12 - 468*x^10 + 59*x^8 + 226*x^6 - 53*x^4 - 9*x^2 + 1, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^22 - 5*x^20 - 34*x^18 + 42*x^16 + 227*x^14 - 96*x^12 - 468*x^10 + 59*x^8 + 226*x^6 - 53*x^4 - 9*x^2 + 1); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^22 - 5*x^20 - 34*x^18 + 42*x^16 + 227*x^14 - 96*x^12 - 468*x^10 + 59*x^8 + 226*x^6 - 53*x^4 - 9*x^2 + 1); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^{10}.D_{22}$ (as 22T32):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 45056
The 200 conjugacy class representatives for $C_2^{10}.D_{22}$
Character table for $C_2^{10}.D_{22}$

Intermediate fields

11.11.3670285774226257.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 22 siblings: data not computed
Degree 44 siblings: data not computed
Minimal sibling: 22.12.56501459388151144478039723653407440896.13

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $22$ ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{6}{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ $22$ ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{7}$ ${\href{/padicField/13.11.0.1}{11} }^{2}$ ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{6}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ $22$ $22$ ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{9}$ ${\href{/padicField/31.4.0.1}{4} }^{3}{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{9}$ ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{9}$ ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{7}$ $22$ ${\href{/padicField/53.11.0.1}{11} }^{2}$ ${\href{/padicField/59.4.0.1}{4} }^{3}{,}\,{\href{/padicField/59.2.0.1}{2} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.11.2.22a176.2$x^{22} + 2 x^{21} + 2 x^{20} + 2 x^{19} + 2 x^{17} + 2 x^{16} + 2 x^{15} + 4 x^{13} + 2 x^{12} + 6 x^{11} + 4 x^{10} + 2 x^{9} + 4 x^{8} + 2 x^{7} + 4 x^{6} + 2 x^{5} + 5 x^{4} + 6 x^{2} + 9$$2$$11$$22$not computednot computed
\(1297\) Copy content Toggle raw display $\Q_{1297}$$x$$1$$1$$0$Trivial$$[\ ]$$
$\Q_{1297}$$x$$1$$1$$0$Trivial$$[\ ]$$
Deg $2$$2$$1$$1$$C_2$$$[\ ]_{2}$$
Deg $2$$2$$1$$1$$C_2$$$[\ ]_{2}$$
Deg $2$$2$$1$$1$$C_2$$$[\ ]_{2}$$
Deg $2$$2$$1$$1$$C_2$$$[\ ]_{2}$$
Deg $2$$2$$1$$1$$C_2$$$[\ ]_{2}$$
Deg $2$$2$$1$$1$$C_2$$$[\ ]_{2}$$
Deg $2$$2$$1$$1$$C_2$$$[\ ]_{2}$$
Deg $2$$2$$1$$1$$C_2$$$[\ ]_{2}$$
Deg $4$$2$$2$$2$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)