Normalized defining polynomial
\( x^{22} - 9 x^{21} - 23 x^{20} + 427 x^{19} - 333 x^{18} - 8101 x^{17} + 19825 x^{16} + 54452 x^{15} - 199899 x^{14} - 268055 x^{13} + 1619754 x^{12} - 923591 x^{11} - 3715861 x^{10} + 3187790 x^{9} + 19675195 x^{8} - 56103742 x^{7} + 59561975 x^{6} - 21663766 x^{5} + 150503099 x^{4} - 437293737 x^{3} + 963528183 x^{2} - 867599298 x + 639704333 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1922554115559596594815766124679345986918150636343=-\,7^{11}\cdot 89^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $156.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(623=7\cdot 89\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{623}(512,·)$, $\chi_{623}(1,·)$, $\chi_{623}(134,·)$, $\chi_{623}(449,·)$, $\chi_{623}(8,·)$, $\chi_{623}(461,·)$, $\chi_{623}(78,·)$, $\chi_{623}(601,·)$, $\chi_{623}(153,·)$, $\chi_{623}(538,·)$, $\chi_{623}(90,·)$, $\chi_{623}(223,·)$, $\chi_{623}(97,·)$, $\chi_{623}(484,·)$, $\chi_{623}(358,·)$, $\chi_{623}(167,·)$, $\chi_{623}(64,·)$, $\chi_{623}(477,·)$, $\chi_{623}(372,·)$, $\chi_{623}(566,·)$, $\chi_{623}(573,·)$, $\chi_{623}(447,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{37} a^{15} - \frac{8}{37} a^{14} + \frac{13}{37} a^{13} + \frac{8}{37} a^{12} - \frac{5}{37} a^{11} + \frac{3}{37} a^{10} + \frac{9}{37} a^{9} + \frac{9}{37} a^{8} - \frac{6}{37} a^{7} - \frac{18}{37} a^{6} + \frac{17}{37} a^{5} + \frac{3}{37} a^{4} + \frac{12}{37} a^{3} + \frac{4}{37} a^{2} - \frac{4}{37} a - \frac{1}{37}$, $\frac{1}{37} a^{16} - \frac{14}{37} a^{14} + \frac{1}{37} a^{13} - \frac{15}{37} a^{12} - \frac{4}{37} a^{10} + \frac{7}{37} a^{9} - \frac{8}{37} a^{8} + \frac{8}{37} a^{7} - \frac{16}{37} a^{6} - \frac{9}{37} a^{5} - \frac{1}{37} a^{4} - \frac{11}{37} a^{3} - \frac{9}{37} a^{2} + \frac{4}{37} a - \frac{8}{37}$, $\frac{1}{37} a^{17} - \frac{18}{37} a^{13} + \frac{1}{37} a^{12} + \frac{12}{37} a^{10} + \frac{7}{37} a^{9} - \frac{14}{37} a^{8} + \frac{11}{37} a^{7} - \frac{2}{37} a^{6} + \frac{15}{37} a^{5} - \frac{6}{37} a^{4} + \frac{11}{37} a^{3} - \frac{14}{37} a^{2} + \frac{10}{37} a - \frac{14}{37}$, $\frac{1}{37} a^{18} - \frac{18}{37} a^{14} + \frac{1}{37} a^{13} + \frac{12}{37} a^{11} + \frac{7}{37} a^{10} - \frac{14}{37} a^{9} + \frac{11}{37} a^{8} - \frac{2}{37} a^{7} + \frac{15}{37} a^{6} - \frac{6}{37} a^{5} + \frac{11}{37} a^{4} - \frac{14}{37} a^{3} + \frac{10}{37} a^{2} - \frac{14}{37} a$, $\frac{1}{37} a^{19} + \frac{5}{37} a^{14} + \frac{12}{37} a^{13} + \frac{8}{37} a^{12} - \frac{9}{37} a^{11} + \frac{3}{37} a^{10} - \frac{12}{37} a^{9} + \frac{12}{37} a^{8} + \frac{18}{37} a^{7} + \frac{3}{37} a^{6} - \frac{16}{37} a^{5} + \frac{3}{37} a^{4} + \frac{4}{37} a^{3} - \frac{16}{37} a^{2} + \frac{2}{37} a - \frac{18}{37}$, $\frac{1}{677618999} a^{20} + \frac{863887}{677618999} a^{19} + \frac{2420329}{677618999} a^{18} - \frac{467112}{677618999} a^{17} - \frac{3118574}{677618999} a^{16} + \frac{6239916}{677618999} a^{15} - \frac{273271215}{677618999} a^{14} + \frac{174789670}{677618999} a^{13} + \frac{68525117}{677618999} a^{12} - \frac{90058046}{677618999} a^{11} + \frac{326778181}{677618999} a^{10} + \frac{168887638}{677618999} a^{9} - \frac{182055027}{677618999} a^{8} + \frac{298447882}{677618999} a^{7} + \frac{319570531}{677618999} a^{6} - \frac{7597661}{18314027} a^{5} - \frac{103630759}{677618999} a^{4} - \frac{3476195}{18314027} a^{3} - \frac{153955802}{677618999} a^{2} + \frac{258323764}{677618999} a + \frac{241861221}{677618999}$, $\frac{1}{9797086316190442999698655289138875728092695103472572135700539142874288229} a^{21} - \frac{6228866783687849050929157258465154442830173981794323313525034996}{9797086316190442999698655289138875728092695103472572135700539142874288229} a^{20} - \frac{352648170410877024945532144219440828246887035685278040975546092825959}{264786116653795756748612305111861506164667435228988436100014571429034817} a^{19} - \frac{39169527273315063725462736737869786442413330226519556030430171729473135}{9797086316190442999698655289138875728092695103472572135700539142874288229} a^{18} - \frac{24160047639235545437226615931306614271839642301137534950668452269655944}{9797086316190442999698655289138875728092695103472572135700539142874288229} a^{17} - \frac{107766826503662001440806346574750123816493857071943767010946795206148123}{9797086316190442999698655289138875728092695103472572135700539142874288229} a^{16} - \frac{79701952102910894132029581994859200385791623414165795509800709643792165}{9797086316190442999698655289138875728092695103472572135700539142874288229} a^{15} + \frac{2582332747010673776219329425641830031801802337037382565249514959616684254}{9797086316190442999698655289138875728092695103472572135700539142874288229} a^{14} + \frac{2715376026697680315085814214175775283706483902311066334222856552251953869}{9797086316190442999698655289138875728092695103472572135700539142874288229} a^{13} - \frac{3482582700696762844703420939643663271749106491810870472382796495478991097}{9797086316190442999698655289138875728092695103472572135700539142874288229} a^{12} - \frac{2497881661746084458202915985410425708409583963071735357352159271477385796}{9797086316190442999698655289138875728092695103472572135700539142874288229} a^{11} + \frac{933341879009140469724029407279963644584491576099918307640969558025194224}{9797086316190442999698655289138875728092695103472572135700539142874288229} a^{10} - \frac{2436829702400119792159510143097104068291986579888452181174271747830200420}{9797086316190442999698655289138875728092695103472572135700539142874288229} a^{9} - \frac{2770115633473236576104658345558540237571090912134557295038990633192397278}{9797086316190442999698655289138875728092695103472572135700539142874288229} a^{8} - \frac{4832297079331134201325407277294687204035669902901404133170306026052574120}{9797086316190442999698655289138875728092695103472572135700539142874288229} a^{7} - \frac{3634941116737292806501457919270083660756247987429634590256148957452490057}{9797086316190442999698655289138875728092695103472572135700539142874288229} a^{6} + \frac{70044348357567172766305508984541993723775414990657758077945600331800332}{264786116653795756748612305111861506164667435228988436100014571429034817} a^{5} + \frac{544490011638021399432487509047232438753391376973692484845154903992835594}{9797086316190442999698655289138875728092695103472572135700539142874288229} a^{4} - \frac{104999769204290647935481728585759542218985538634301583516840036983667484}{264786116653795756748612305111861506164667435228988436100014571429034817} a^{3} - \frac{855054570260313142100509126718041639534820142689374543424473582954102864}{9797086316190442999698655289138875728092695103472572135700539142874288229} a^{2} + \frac{1265457731946216137668498192068295975538497896036574844639149557541251044}{9797086316190442999698655289138875728092695103472572135700539142874288229} a - \frac{1849661033316241457007901986560621703498331774402963444642698036174675302}{9797086316190442999698655289138875728092695103472572135700539142874288229}$
Class group and class number
$C_{1084931}$, which has order $1084931$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 866679281.3791491 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 11.11.31181719929966183601.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | $22$ | $22$ | R | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{22}$ | $22$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | $22$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 89 | Data not computed | ||||||