Normalized defining polynomial
\( x^{22} + 110 x^{20} + 4675 x^{18} + 101783 x^{16} + 1279201 x^{14} + 9871136 x^{12} + 48063862 x^{10} + 147421505 x^{8} + 274663048 x^{6} + 281918538 x^{4} + 121207185 x^{2} + 59049 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1898310766666226673632489495745922930975549947904=-\,2^{22}\cdot 11^{40}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $156.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(484=2^{2}\cdot 11^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{484}(1,·)$, $\chi_{484}(67,·)$, $\chi_{484}(133,·)$, $\chi_{484}(199,·)$, $\chi_{484}(265,·)$, $\chi_{484}(331,·)$, $\chi_{484}(397,·)$, $\chi_{484}(463,·)$, $\chi_{484}(23,·)$, $\chi_{484}(89,·)$, $\chi_{484}(155,·)$, $\chi_{484}(221,·)$, $\chi_{484}(287,·)$, $\chi_{484}(353,·)$, $\chi_{484}(419,·)$, $\chi_{484}(45,·)$, $\chi_{484}(111,·)$, $\chi_{484}(177,·)$, $\chi_{484}(243,·)$, $\chi_{484}(309,·)$, $\chi_{484}(375,·)$, $\chi_{484}(441,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{9} a^{6} - \frac{1}{9} a^{4} - \frac{2}{9} a^{2}$, $\frac{1}{9} a^{7} - \frac{1}{9} a^{5} + \frac{1}{9} a^{3} + \frac{1}{3} a$, $\frac{1}{9} a^{8} + \frac{1}{9} a^{2}$, $\frac{1}{81} a^{9} + \frac{1}{27} a^{7} + \frac{1}{27} a^{5} + \frac{10}{81} a^{3} + \frac{1}{9} a$, $\frac{1}{81} a^{10} + \frac{1}{27} a^{8} + \frac{1}{27} a^{6} + \frac{10}{81} a^{4} + \frac{1}{9} a^{2}$, $\frac{1}{81} a^{11} + \frac{1}{27} a^{7} - \frac{8}{81} a^{5} - \frac{4}{27} a^{3}$, $\frac{1}{243} a^{12} + \frac{1}{243} a^{10} - \frac{1}{81} a^{8} + \frac{4}{243} a^{6} - \frac{11}{243} a^{4} - \frac{2}{27} a^{2}$, $\frac{1}{243} a^{13} + \frac{1}{243} a^{11} + \frac{13}{243} a^{7} - \frac{2}{243} a^{5} + \frac{4}{81} a^{3} + \frac{1}{9} a$, $\frac{1}{729} a^{14} - \frac{1}{729} a^{12} + \frac{4}{729} a^{10} - \frac{17}{729} a^{8} + \frac{8}{729} a^{6} + \frac{13}{729} a^{4} - \frac{2}{81} a^{2}$, $\frac{1}{729} a^{15} - \frac{1}{729} a^{13} + \frac{4}{729} a^{11} + \frac{1}{729} a^{9} - \frac{19}{729} a^{7} - \frac{95}{729} a^{5} + \frac{1}{9} a^{3} + \frac{2}{9} a$, $\frac{1}{6561} a^{16} - \frac{1}{2187} a^{14} - \frac{4}{2187} a^{12} + \frac{38}{6561} a^{10} - \frac{22}{2187} a^{8} + \frac{56}{2187} a^{6} + \frac{721}{6561} a^{4} + \frac{130}{729} a^{2} + \frac{1}{9}$, $\frac{1}{6561} a^{17} - \frac{1}{2187} a^{15} - \frac{4}{2187} a^{13} + \frac{38}{6561} a^{11} + \frac{5}{2187} a^{9} - \frac{106}{2187} a^{7} - \frac{494}{6561} a^{5} - \frac{104}{729} a^{3} - \frac{1}{9} a$, $\frac{1}{19683} a^{18} + \frac{1}{19683} a^{16} + \frac{1}{6561} a^{14} - \frac{37}{19683} a^{12} - \frac{49}{19683} a^{10} + \frac{301}{6561} a^{8} + \frac{880}{19683} a^{6} + \frac{1975}{19683} a^{4} - \frac{182}{2187} a^{2} - \frac{5}{27}$, $\frac{1}{59049} a^{19} - \frac{2}{59049} a^{17} - \frac{5}{19683} a^{15} + \frac{26}{59049} a^{13} - \frac{28}{59049} a^{11} + \frac{34}{19683} a^{9} + \frac{889}{59049} a^{7} + \frac{8452}{59049} a^{5} + \frac{211}{6561} a^{3} - \frac{8}{81} a$, $\frac{1}{26402245970311503} a^{20} + \frac{138754934398}{26402245970311503} a^{18} - \frac{442186375951}{8800748656770501} a^{16} - \frac{11464582516660}{26402245970311503} a^{14} + \frac{9487050996848}{26402245970311503} a^{12} - \frac{5481345992918}{977860961863389} a^{10} + \frac{623585795482060}{26402245970311503} a^{8} - \frac{1007779356535613}{26402245970311503} a^{6} + \frac{161857180309537}{8800748656770501} a^{4} + \frac{389337864680260}{977860961863389} a^{2} - \frac{25077976301}{12072357553869}$, $\frac{1}{79206737910934509} a^{21} + \frac{585879288245}{79206737910934509} a^{19} + \frac{5827430533699}{79206737910934509} a^{17} - \frac{6099090270496}{79206737910934509} a^{15} - \frac{111683648895689}{79206737910934509} a^{13} - \frac{35768128993189}{79206737910934509} a^{11} - \frac{477681488043101}{79206737910934509} a^{9} + \frac{53693859497165}{79206737910934509} a^{7} + \frac{4345148963335915}{79206737910934509} a^{5} - \frac{262784338269620}{8800748656770501} a^{3} - \frac{19748705498171}{108651217984821} a$
Class group and class number
$C_{14411}$, which has order $14411$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{4825964}{6419218568031} a^{21} + \frac{505973402}{6419218568031} a^{19} + \frac{19919812957}{6419218568031} a^{17} + \frac{385002011911}{6419218568031} a^{15} + \frac{4046996472904}{6419218568031} a^{13} + \frac{23912359716185}{6419218568031} a^{11} + \frac{76235839889033}{6419218568031} a^{9} + \frac{100272578425481}{6419218568031} a^{7} - \frac{77790813933239}{6419218568031} a^{5} - \frac{41046756604106}{713246507559} a^{3} - \frac{132988481978}{2935170813} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 285114946276.13544 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 11.11.672749994932560009201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | $22$ | R | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | $22$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 11 | Data not computed | ||||||