Normalized defining polynomial
\( x^{21} - 441 x^{19} - 938 x^{18} + 74949 x^{17} + 303702 x^{16} - 5958638 x^{15} - 35693127 x^{14} + 209014400 x^{13} + 1889261640 x^{12} - 1478858493 x^{11} - 45340006873 x^{10} - 78589262157 x^{9} + 392624985032 x^{8} + 1524423979489 x^{7} + 495742766778 x^{6} - 5115634476204 x^{5} - 7304874384850 x^{4} + 1192289177177 x^{3} + 7245219154649 x^{2} + 2766193463894 x - 330316678789 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(98353367498957471525704156941061377491148627676882129=7^{38}\cdot 31^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $333.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1519=7^{2}\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1519}(1,·)$, $\chi_{1519}(842,·)$, $\chi_{1519}(459,·)$, $\chi_{1519}(652,·)$, $\chi_{1519}(1493,·)$, $\chi_{1519}(1110,·)$, $\chi_{1519}(1303,·)$, $\chi_{1519}(408,·)$, $\chi_{1519}(25,·)$, $\chi_{1519}(218,·)$, $\chi_{1519}(1059,·)$, $\chi_{1519}(676,·)$, $\chi_{1519}(869,·)$, $\chi_{1519}(1327,·)$, $\chi_{1519}(625,·)$, $\chi_{1519}(242,·)$, $\chi_{1519}(435,·)$, $\chi_{1519}(1276,·)$, $\chi_{1519}(893,·)$, $\chi_{1519}(1086,·)$, $\chi_{1519}(191,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{31} a^{18} + \frac{9}{31} a^{17} - \frac{15}{31} a^{16} + \frac{13}{31} a^{15} + \frac{12}{31} a^{14} - \frac{2}{31} a^{13} + \frac{5}{31} a^{12} + \frac{14}{31} a^{11} - \frac{1}{31} a^{10} - \frac{8}{31} a^{9} + \frac{2}{31} a^{8} - \frac{6}{31} a^{7} - \frac{12}{31} a^{6} + \frac{9}{31} a^{5} + \frac{4}{31} a^{4} + \frac{1}{31} a^{2} + \frac{2}{31} a - \frac{1}{31}$, $\frac{1}{31} a^{19} - \frac{3}{31} a^{17} - \frac{7}{31} a^{16} - \frac{12}{31} a^{15} + \frac{14}{31} a^{14} - \frac{8}{31} a^{13} - \frac{3}{31} a^{11} + \frac{1}{31} a^{10} + \frac{12}{31} a^{9} + \frac{7}{31} a^{8} + \frac{11}{31} a^{7} - \frac{7}{31} a^{6} - \frac{15}{31} a^{5} - \frac{5}{31} a^{4} + \frac{1}{31} a^{3} - \frac{7}{31} a^{2} + \frac{12}{31} a + \frac{9}{31}$, $\frac{1}{1861853095884801861252332720645752802184585580816366605312360920807641936445907068734688564021999865230845203009569178925447} a^{20} + \frac{3822550873409959564699440437319433245479327930093872945196682948428954374002180056622493386143932004633994168969224479961}{1861853095884801861252332720645752802184585580816366605312360920807641936445907068734688564021999865230845203009569178925447} a^{19} + \frac{10975632430158628359289222813355098865767232373509017968631240747882802450180224849911904740981732870655494307880651317538}{1861853095884801861252332720645752802184585580816366605312360920807641936445907068734688564021999865230845203009569178925447} a^{18} - \frac{585993509553101672583462693802082620572607067332896857751898229480100117319246362220787516763854416924688077944697346687170}{1861853095884801861252332720645752802184585580816366605312360920807641936445907068734688564021999865230845203009569178925447} a^{17} - \frac{593077963051099555297147647125811523470575654824380219728882970078532137433245461972419639406232982521348230153150750172669}{1861853095884801861252332720645752802184585580816366605312360920807641936445907068734688564021999865230845203009569178925447} a^{16} + \frac{545475508705395040973406672053974792497793631911286956161723722663727461374515386069363798114912311037380655027700074887480}{1861853095884801861252332720645752802184585580816366605312360920807641936445907068734688564021999865230845203009569178925447} a^{15} - \frac{877603224171839543619829662013003399843854134186130118626763145867224076275448244673076028885809881944469461149695952661096}{1861853095884801861252332720645752802184585580816366605312360920807641936445907068734688564021999865230845203009569178925447} a^{14} + \frac{444142366848794756661764037899013907449150118527778469719557232239840334428031145889054251569214161742742885996671041446813}{1861853095884801861252332720645752802184585580816366605312360920807641936445907068734688564021999865230845203009569178925447} a^{13} + \frac{169893622453463868836331273950459033694594380648219287900093326374913449376683694513390883649092505679520447951061600156049}{1861853095884801861252332720645752802184585580816366605312360920807641936445907068734688564021999865230845203009569178925447} a^{12} + \frac{422526874720574915786648559922837417795177311748934667922509815235019024197520009742577696824509796481036352371531139764508}{1861853095884801861252332720645752802184585580816366605312360920807641936445907068734688564021999865230845203009569178925447} a^{11} + \frac{571678650778160048335224643990261057098161991583599039028905436331904416757019372659774825780178397886348285806368699261830}{1861853095884801861252332720645752802184585580816366605312360920807641936445907068734688564021999865230845203009569178925447} a^{10} - \frac{191675702989245211657294875739311042052247350982845721582608686263579717319942499379766531749137244477545251245416064520494}{1861853095884801861252332720645752802184585580816366605312360920807641936445907068734688564021999865230845203009569178925447} a^{9} - \frac{710395406314748056410726395468114478794231773818982732446839005695472521581503949601640134213705218409010291796309352329110}{1861853095884801861252332720645752802184585580816366605312360920807641936445907068734688564021999865230845203009569178925447} a^{8} + \frac{494895037510186085472702596112568513648186039240684425062964903514196989139863066201704054808447824590049504962677929364557}{1861853095884801861252332720645752802184585580816366605312360920807641936445907068734688564021999865230845203009569178925447} a^{7} + \frac{562278605707035026375474903688468099509709632162494221362521783640481871848579587331078824678258158926091796668832177860320}{1861853095884801861252332720645752802184585580816366605312360920807641936445907068734688564021999865230845203009569178925447} a^{6} + \frac{597367952017987082840282954809170385725317483570672838322495054092341542989931095097403988256411038704822752182698099672973}{1861853095884801861252332720645752802184585580816366605312360920807641936445907068734688564021999865230845203009569178925447} a^{5} - \frac{838440482647512225879546203756829680686164384799196186283820430247251930758539483152439339276106837876408136998767536888235}{1861853095884801861252332720645752802184585580816366605312360920807641936445907068734688564021999865230845203009569178925447} a^{4} - \frac{857112530619075512320629221430715653726188163590141643545607787413055649668720208687363926121511008106688544914215395137158}{1861853095884801861252332720645752802184585580816366605312360920807641936445907068734688564021999865230845203009569178925447} a^{3} - \frac{194953165893248562890828889572923202366935138220051938082045667265950244652655783443066522028159909878184308076925518372699}{1861853095884801861252332720645752802184585580816366605312360920807641936445907068734688564021999865230845203009569178925447} a^{2} + \frac{554006380333008567291945567516879947953710851180503120750746282221052903940915586962760301523981472355632969208540990196308}{1861853095884801861252332720645752802184585580816366605312360920807641936445907068734688564021999865230845203009569178925447} a + \frac{449319926529035586878106381655653871030879820320964770951659506483000848732932766729693824726702079595102425053793361131689}{1861853095884801861252332720645752802184585580816366605312360920807641936445907068734688564021999865230845203009569178925447}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17576256199406360000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 21 |
| The 21 conjugacy class representatives for $C_{21}$ |
| Character table for $C_{21}$ is not computed |
Intermediate fields
| 3.3.47089.2, 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | R | $21$ | $21$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{7}$ | $21$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | R | $21$ | $21$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $31$ | 31.3.2.3 | $x^{3} - 1519$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 31.3.2.3 | $x^{3} - 1519$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.3 | $x^{3} - 1519$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.3 | $x^{3} - 1519$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.3 | $x^{3} - 1519$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.3 | $x^{3} - 1519$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.3 | $x^{3} - 1519$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |