Normalized defining polynomial
\( x^{21} - 4 x^{20} - 92 x^{19} + 320 x^{18} + 3272 x^{17} - 9934 x^{16} - 56698 x^{15} + 153364 x^{14} + 503792 x^{13} - 1226011 x^{12} - 2281327 x^{11} + 4808330 x^{10} + 5496701 x^{9} - 8919502 x^{8} - 7230861 x^{7} + 7111669 x^{6} + 4936501 x^{5} - 2093106 x^{4} - 1493691 x^{3} + 73346 x^{2} + 122402 x + 12691 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(201828556349525896653055169768510327187913320529=19^{14}\cdot 43^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $178.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(817=19\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{817}(704,·)$, $\chi_{817}(1,·)$, $\chi_{817}(514,·)$, $\chi_{817}(391,·)$, $\chi_{817}(520,·)$, $\chi_{817}(11,·)$, $\chi_{817}(140,·)$, $\chi_{817}(64,·)$, $\chi_{817}(216,·)$, $\chi_{817}(723,·)$, $\chi_{817}(790,·)$, $\chi_{817}(87,·)$, $\chi_{817}(600,·)$, $\chi_{817}(729,·)$, $\chi_{817}(666,·)$, $\chi_{817}(742,·)$, $\chi_{817}(102,·)$, $\chi_{817}(809,·)$, $\chi_{817}(752,·)$, $\chi_{817}(305,·)$, $\chi_{817}(121,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{7} a^{9} - \frac{1}{7} a^{3}$, $\frac{1}{7} a^{10} - \frac{1}{7} a^{4}$, $\frac{1}{7} a^{11} - \frac{1}{7} a^{5}$, $\frac{1}{7} a^{12} - \frac{1}{7} a^{6}$, $\frac{1}{7} a^{13} - \frac{1}{7} a$, $\frac{1}{49} a^{14} - \frac{2}{49} a^{8} + \frac{1}{49} a^{2}$, $\frac{1}{49} a^{15} - \frac{2}{49} a^{9} + \frac{1}{49} a^{3}$, $\frac{1}{49} a^{16} - \frac{2}{49} a^{10} + \frac{1}{49} a^{4}$, $\frac{1}{49} a^{17} - \frac{2}{49} a^{11} + \frac{1}{49} a^{5}$, $\frac{1}{49} a^{18} - \frac{2}{49} a^{12} + \frac{1}{49} a^{6}$, $\frac{1}{12691} a^{19} + \frac{27}{12691} a^{18} + \frac{3}{1813} a^{17} + \frac{71}{12691} a^{16} + \frac{3}{343} a^{15} + \frac{17}{1813} a^{14} - \frac{247}{12691} a^{13} + \frac{758}{12691} a^{12} + \frac{123}{1813} a^{11} + \frac{397}{12691} a^{10} - \frac{390}{12691} a^{9} - \frac{17}{1813} a^{8} - \frac{587}{12691} a^{7} + \frac{1077}{12691} a^{6} + \frac{18}{259} a^{5} - \frac{2036}{12691} a^{4} + \frac{426}{12691} a^{3} - \frac{6}{259} a^{2} - \frac{22}{259} a$, $\frac{1}{98195636016228310457646476864726073927630859} a^{20} + \frac{565432352110734388328705713147333489774}{98195636016228310457646476864726073927630859} a^{19} + \frac{412844832577986171967747826768937829953042}{98195636016228310457646476864726073927630859} a^{18} - \frac{798068004775347064862711543207986798047312}{98195636016228310457646476864726073927630859} a^{17} + \frac{687432011924703653373411001413767488896161}{98195636016228310457646476864726073927630859} a^{16} + \frac{964508758216345043195579470514832257720008}{98195636016228310457646476864726073927630859} a^{15} - \frac{895373220744696120053229096990389829843630}{98195636016228310457646476864726073927630859} a^{14} + \frac{5899745557969787235577867815259877923832546}{98195636016228310457646476864726073927630859} a^{13} - \frac{3697856318073619115379144536707301965018888}{98195636016228310457646476864726073927630859} a^{12} + \frac{3632711591108466855934307428789184450625390}{98195636016228310457646476864726073927630859} a^{11} - \frac{4419762333497889772213438357316100707913117}{98195636016228310457646476864726073927630859} a^{10} - \frac{5250739248185295603127450733753338707604057}{98195636016228310457646476864726073927630859} a^{9} + \frac{5083861958068680349786862567820193870288918}{98195636016228310457646476864726073927630859} a^{8} + \frac{1043943245658743409086005316439259497670707}{98195636016228310457646476864726073927630859} a^{7} - \frac{2573164863401372638691240529469676669901688}{98195636016228310457646476864726073927630859} a^{6} - \frac{10844632770750183322647404080063769306464415}{98195636016228310457646476864726073927630859} a^{5} - \frac{4049430074245513044886389471486519930167114}{98195636016228310457646476864726073927630859} a^{4} + \frac{17782376386464454384172832009806378029099629}{98195636016228310457646476864726073927630859} a^{3} + \frac{4942536303305987033631026313247235655866067}{14027948002318330065378068123532296275375837} a^{2} + \frac{751696755948520850992327707118749305202548}{2003992571759761437911152589076042325053691} a - \frac{1636930663114712762905543924525559386736}{7737423056987495899270859417282016699049}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1907344761740974800 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 21 |
| The 21 conjugacy class representatives for $C_{21}$ |
| Character table for $C_{21}$ is not computed |
Intermediate fields
| 3.3.361.1, 7.7.6321363049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{21}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ | $21$ | $21$ | R | $21$ | $21$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{21}$ | $21$ | R | $21$ | $21$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 19 | Data not computed | ||||||
| 43 | Data not computed | ||||||