Normalized defining polynomial
\( x^{21} - x^{20} - 192 x^{19} + 277 x^{18} + 14834 x^{17} - 26598 x^{16} - 597785 x^{15} + 1210958 x^{14} + 13738816 x^{13} - 29260009 x^{12} - 186891957 x^{11} + 392209615 x^{10} + 1521281881 x^{9} - 2924408106 x^{8} - 7272568707 x^{7} + 11518541404 x^{6} + 19001737751 x^{5} - 20453992557 x^{4} - 21439276738 x^{3} + 9354769810 x^{2} + 732657661 x - 357231187 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1838975925801931725577355822978754285318753465289=13^{14}\cdot 43^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $198.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(559=13\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{559}(1,·)$, $\chi_{559}(68,·)$, $\chi_{559}(391,·)$, $\chi_{559}(74,·)$, $\chi_{559}(139,·)$, $\chi_{559}(146,·)$, $\chi_{559}(274,·)$, $\chi_{559}(152,·)$, $\chi_{559}(380,·)$, $\chi_{559}(282,·)$, $\chi_{559}(224,·)$, $\chi_{559}(425,·)$, $\chi_{559}(170,·)$, $\chi_{559}(365,·)$, $\chi_{559}(178,·)$, $\chi_{559}(183,·)$, $\chi_{559}(185,·)$, $\chi_{559}(315,·)$, $\chi_{559}(508,·)$, $\chi_{559}(445,·)$, $\chi_{559}(126,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{509} a^{19} - \frac{235}{509} a^{18} - \frac{137}{509} a^{17} + \frac{226}{509} a^{16} + \frac{146}{509} a^{15} + \frac{27}{509} a^{14} - \frac{117}{509} a^{13} - \frac{80}{509} a^{12} + \frac{27}{509} a^{11} + \frac{249}{509} a^{10} - \frac{141}{509} a^{9} + \frac{134}{509} a^{8} + \frac{62}{509} a^{7} + \frac{106}{509} a^{6} - \frac{235}{509} a^{5} + \frac{49}{509} a^{4} - \frac{131}{509} a^{3} - \frac{217}{509} a^{2} - \frac{143}{509} a - \frac{214}{509}$, $\frac{1}{55203909301187356764850778511665189264303648494138209029836811635708717648360173387982974041} a^{20} - \frac{41319123850416522117961906650696177734622374263223528707322873283710861352068566111118987}{55203909301187356764850778511665189264303648494138209029836811635708717648360173387982974041} a^{19} + \frac{16453675243112503524961231940020303489617872126263494549887633059682390614026529790086740498}{55203909301187356764850778511665189264303648494138209029836811635708717648360173387982974041} a^{18} - \frac{12885632374449033007033674179085681564024341954553820065349557774490352293062882553954704310}{55203909301187356764850778511665189264303648494138209029836811635708717648360173387982974041} a^{17} + \frac{26875475332317959571595801983201566552553430370247909565667147676261184711397620219765763403}{55203909301187356764850778511665189264303648494138209029836811635708717648360173387982974041} a^{16} - \frac{13943214686410813771776662919163263196929069667740687310192697273420913423625451002793423967}{55203909301187356764850778511665189264303648494138209029836811635708717648360173387982974041} a^{15} + \frac{7030422503795344505042445211697988637760630436773103108803592872891106801360358935587183224}{55203909301187356764850778511665189264303648494138209029836811635708717648360173387982974041} a^{14} - \frac{21391910807754410617072178541255362815317048973074614715561214836676931780344111602936647079}{55203909301187356764850778511665189264303648494138209029836811635708717648360173387982974041} a^{13} - \frac{19621562956139840215447045262729442429012266437839429665846336428863435428444042985038279046}{55203909301187356764850778511665189264303648494138209029836811635708717648360173387982974041} a^{12} + \frac{18576323629386168716993894670949919412178336167911638872940791146478093676084311263158398718}{55203909301187356764850778511665189264303648494138209029836811635708717648360173387982974041} a^{11} - \frac{1807308240409031898441347946852368244177126784352203240278101316134564491467409876320078238}{55203909301187356764850778511665189264303648494138209029836811635708717648360173387982974041} a^{10} - \frac{7456819284927031773733476657786935629821702699983882022704087549146829863670273347885981302}{55203909301187356764850778511665189264303648494138209029836811635708717648360173387982974041} a^{9} + \frac{1479556486109644023339542975318201378829998518698137814603772647086110137560846453122738101}{55203909301187356764850778511665189264303648494138209029836811635708717648360173387982974041} a^{8} + \frac{6888987742827220058540995683435670195128811951883551574870181028218371744907396147889292526}{55203909301187356764850778511665189264303648494138209029836811635708717648360173387982974041} a^{7} - \frac{890647279564285940697475558022090828615022241863605140465641989686896178019588460783203476}{55203909301187356764850778511665189264303648494138209029836811635708717648360173387982974041} a^{6} - \frac{20457877126565247128708077245903958933262927559137437845312273275624923158519010521625983393}{55203909301187356764850778511665189264303648494138209029836811635708717648360173387982974041} a^{5} + \frac{13396709998321580744602513912049088947702903085283470787443859761203670038367819221741435002}{55203909301187356764850778511665189264303648494138209029836811635708717648360173387982974041} a^{4} - \frac{11804739040938759501523706266616156381970418293672253513608493234939740413449863336806748362}{55203909301187356764850778511665189264303648494138209029836811635708717648360173387982974041} a^{3} - \frac{6204611457191275943687350046957923743660182310622793319454908003994738325489646932121442749}{55203909301187356764850778511665189264303648494138209029836811635708717648360173387982974041} a^{2} - \frac{10294554160945100286042589477211916217914583463028652593310273939934726090806841428812350593}{55203909301187356764850778511665189264303648494138209029836811635708717648360173387982974041} a - \frac{21761310254144959005922048585218205785553685882244229160102319734997127862717930979598515153}{55203909301187356764850778511665189264303648494138209029836811635708717648360173387982974041}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 47107157976503970 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 21 |
| The 21 conjugacy class representatives for $C_{21}$ |
| Character table for $C_{21}$ is not computed |
Intermediate fields
| 3.3.312481.1, 7.7.6321363049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{7}$ | $21$ | R | $21$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | $21$ | R | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | $21$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| 43 | Data not computed | ||||||