Normalized defining polynomial
\( x^{21} + 24 x^{19} - 16 x^{18} - 36 x^{17} + 48 x^{16} - 3472 x^{15} + 6912 x^{14} - 11088 x^{13} + \cdots + 65536 \)
Invariants
| Degree: | $21$ |
| |
| Signature: | $[13, 4]$ |
| |
| Discriminant: |
\(8866863017363332031653762708238323679232\)
\(\medspace = 2^{38}\cdot 3^{21}\cdot 11\cdot 809^{6}\)
|
| |
| Root discriminant: | \(79.85\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(3\), \(11\), \(809\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{33}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2}a^{2}$, $\frac{1}{2}a^{3}$, $\frac{1}{4}a^{4}$, $\frac{1}{4}a^{5}$, $\frac{1}{8}a^{6}$, $\frac{1}{16}a^{7}-\frac{1}{8}a^{5}-\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{16}a^{8}$, $\frac{1}{32}a^{9}-\frac{1}{2}a$, $\frac{1}{32}a^{10}$, $\frac{1}{64}a^{11}-\frac{1}{4}a^{3}$, $\frac{1}{64}a^{12}$, $\frac{1}{128}a^{13}-\frac{1}{8}a^{5}$, $\frac{1}{256}a^{14}-\frac{1}{64}a^{10}-\frac{1}{16}a^{6}-\frac{1}{4}a^{2}$, $\frac{1}{512}a^{15}-\frac{1}{128}a^{11}-\frac{1}{32}a^{7}-\frac{1}{8}a^{3}$, $\frac{1}{2048}a^{16}-\frac{1}{1024}a^{15}-\frac{1}{512}a^{14}-\frac{1}{256}a^{13}-\frac{1}{512}a^{12}-\frac{1}{256}a^{11}-\frac{1}{128}a^{8}+\frac{1}{64}a^{7}+\frac{1}{32}a^{6}+\frac{1}{16}a^{5}-\frac{1}{32}a^{4}-\frac{1}{16}a^{3}$, $\frac{1}{8192}a^{17}-\frac{1}{512}a^{14}+\frac{3}{2048}a^{13}+\frac{3}{512}a^{12}-\frac{3}{512}a^{11}-\frac{1}{64}a^{10}+\frac{7}{512}a^{9}+\frac{1}{64}a^{8}-\frac{1}{32}a^{7}-\frac{1}{16}a^{6}+\frac{11}{128}a^{5}-\frac{3}{32}a^{4}-\frac{3}{32}a^{3}-\frac{1}{8}a^{2}-\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{32768}a^{18}-\frac{1}{16384}a^{17}-\frac{1}{2048}a^{15}-\frac{5}{8192}a^{14}+\frac{3}{4096}a^{13}-\frac{1}{2048}a^{12}+\frac{7}{1024}a^{11}+\frac{23}{2048}a^{10}-\frac{3}{1024}a^{9}+\frac{1}{64}a^{8}+\frac{11}{512}a^{6}-\frac{1}{256}a^{5}-\frac{5}{128}a^{4}+\frac{9}{64}a^{3}+\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{131072}a^{19}-\frac{1}{32768}a^{17}-\frac{1}{8192}a^{16}+\frac{19}{32768}a^{15}-\frac{1}{8192}a^{14}-\frac{15}{4096}a^{13}-\frac{13}{2048}a^{12}+\frac{19}{8192}a^{11}-\frac{11}{1024}a^{10}+\frac{5}{2048}a^{9}+\frac{1}{128}a^{8}+\frac{43}{2048}a^{7}+\frac{5}{512}a^{6}-\frac{19}{256}a^{5}-\frac{7}{64}a^{4}+\frac{1}{128}a^{3}+\frac{1}{16}a^{2}+\frac{5}{16}a-\frac{1}{8}$, $\frac{1}{524288}a^{20}-\frac{1}{262144}a^{19}-\frac{1}{131072}a^{18}-\frac{1}{65536}a^{17}+\frac{27}{131072}a^{16}+\frac{43}{65536}a^{15}-\frac{7}{8192}a^{14}+\frac{1}{4096}a^{13}+\frac{251}{32768}a^{12}-\frac{127}{16384}a^{11}-\frac{15}{8192}a^{10}+\frac{3}{4096}a^{9}-\frac{117}{8192}a^{8}+\frac{31}{4096}a^{7}+\frac{1}{128}a^{6}-\frac{59}{512}a^{5}-\frac{35}{512}a^{4}-\frac{13}{256}a^{3}+\frac{3}{64}a^{2}-\frac{3}{16}a-\frac{7}{16}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $16$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{530909559}{524288}a^{20}+\frac{173781207}{262144}a^{19}+\frac{3242321541}{131072}a^{18}-\frac{531441}{65536}a^{17}-\frac{4779367011}{131072}a^{16}+\frac{1620875367}{65536}a^{15}-\frac{28669175235}{8192}a^{14}+\frac{19284906951}{4096}a^{13}-\frac{266904170739}{32768}a^{12}+\frac{216309714705}{16384}a^{11}+\frac{959554435779}{8192}a^{10}-\frac{1374209180505}{4096}a^{9}+\frac{3938129258589}{8192}a^{8}-\frac{2562011698173}{4096}a^{7}-\frac{60681527803}{128}a^{6}+\frac{2111829085251}{512}a^{5}-\frac{3820870002873}{512}a^{4}+\frac{1730779511183}{256}a^{3}-\frac{217601174655}{64}a^{2}+\frac{7274895849}{8}a-\frac{1621426507}{16}$, $\frac{2257187391}{524288}a^{20}+\frac{729996543}{262144}a^{19}+\frac{13779200061}{131072}a^{18}-\frac{58054401}{65536}a^{17}-\frac{20390099787}{131072}a^{16}+\frac{6948663759}{65536}a^{15}-\frac{121890580227}{8192}a^{14}+\frac{82467506661}{4096}a^{13}-\frac{1137487418395}{32768}a^{12}+\frac{923232922569}{16384}a^{11}+\frac{4077119283147}{8192}a^{10}-\frac{5859278914745}{4096}a^{9}+\frac{16813537508853}{8192}a^{8}-\frac{10935877434357}{4096}a^{7}-\frac{256179342389}{128}a^{6}+\frac{8991203160375}{512}a^{5}-\frac{16306971425697}{512}a^{4}+\frac{7402443519839}{256}a^{3}-\frac{932614650639}{64}a^{2}+\frac{31245365007}{8}a-\frac{6978981579}{16}$, $\frac{987942771}{524288}a^{20}+\frac{320104053}{262144}a^{19}+\frac{6031366321}{131072}a^{18}-\frac{21662343}{65536}a^{17}-\frac{8919745887}{131072}a^{16}+\frac{3037520425}{65536}a^{15}-\frac{26674916643}{4096}a^{14}+\frac{9015747387}{1024}a^{13}-\frac{497681183887}{32768}a^{12}+\frac{403846389819}{16384}a^{11}+\frac{1784669786271}{8192}a^{10}-\frac{2563408193091}{4096}a^{9}+\frac{7354354391217}{8192}a^{8}-\frac{4783583045979}{4096}a^{7}-\frac{448992441885}{512}a^{6}+\frac{3934487665449}{512}a^{5}-\frac{7133174733645}{512}a^{4}+\frac{3237006703197}{256}a^{3}-\frac{407691248895}{64}a^{2}+\frac{27308813931}{16}a-\frac{3048828617}{16}$, $\frac{1221043653}{262144}a^{20}+\frac{98590365}{32768}a^{19}+\frac{7453646919}{65536}a^{18}-\frac{17382465}{16384}a^{17}-\frac{11033854593}{65536}a^{16}+\frac{1881402649}{16384}a^{15}-\frac{131875650909}{8192}a^{14}+\frac{89280737361}{4096}a^{13}-\frac{615517993713}{16384}a^{12}+\frac{31227976683}{512}a^{11}+\frac{2205391476861}{4096}a^{10}-\frac{12385300795}{8}a^{9}+\frac{9099860891031}{4096}a^{8}-\frac{2959299111657}{1024}a^{7}-\frac{1107745057049}{512}a^{6}+\frac{1216151533017}{64}a^{5}-\frac{8825249329911}{256}a^{4}+\frac{1001801602863}{32}a^{3}-\frac{504991870335}{32}a^{2}+\frac{67693819527}{16}a-472643508$, $\frac{5761093815}{524288}a^{20}+\frac{1866281877}{262144}a^{19}+\frac{35171136981}{131072}a^{18}-\frac{128647143}{65536}a^{17}-\frac{52016542995}{131072}a^{16}+\frac{17716025089}{65536}a^{15}-\frac{155552290803}{4096}a^{14}+\frac{52579514481}{1024}a^{13}-\frac{2902331747299}{32768}a^{12}+\frac{2355147605835}{16384}a^{11}+\frac{10407011108427}{8192}a^{10}-\frac{14948971282795}{4096}a^{9}+\frac{42889517808093}{8192}a^{8}-\frac{27897097277331}{4096}a^{7}-\frac{2617914649029}{512}a^{6}+\frac{22944073595013}{512}a^{5}-\frac{41599210091265}{512}a^{4}+\frac{18878415365109}{256}a^{3}-\frac{2377800740619}{64}a^{2}+\frac{159284132937}{16}a-\frac{17784130737}{16}$, $\frac{558665451}{131072}a^{20}+\frac{181598211}{65536}a^{19}+\frac{3411025795}{32768}a^{18}-\frac{8550171}{16384}a^{17}-\frac{5039022327}{32768}a^{16}+\frac{1714054499}{16384}a^{15}-\frac{60336627219}{4096}a^{14}+\frac{40723017075}{2048}a^{13}-\frac{281259523599}{8192}a^{12}+\frac{228132037629}{4096}a^{11}+\frac{1009360582101}{2048}a^{10}-\frac{1448455411599}{1024}a^{9}+\frac{4154199295401}{2048}a^{8}-\frac{2702231363649}{1024}a^{7}-\frac{508736175901}{256}a^{6}+\frac{139002420933}{8}a^{5}-\frac{4029610493379}{128}a^{4}+\frac{1827633757157}{64}a^{3}-\frac{230065672059}{16}a^{2}+\frac{7701435855}{2}a-\frac{1718749045}{4}$, $\frac{1770030643}{65536}a^{20}+\frac{1130388235}{65536}a^{19}+\frac{21601330241}{32768}a^{18}-\frac{91261853}{8192}a^{17}-\frac{16046655347}{16384}a^{16}+\frac{10992665613}{16384}a^{15}-\frac{764683292237}{8192}a^{14}+\frac{520479796987}{4096}a^{13}-\frac{894245439041}{4096}a^{12}+\frac{1453830923933}{4096}a^{11}+\frac{6390284030363}{2048}a^{10}-\frac{4608444418153}{512}a^{9}+\frac{13242628510625}{1024}a^{8}-\frac{17222630052011}{1024}a^{7}-\frac{6380815831721}{512}a^{6}+\frac{28244157389595}{256}a^{5}-\frac{25677450723233}{128}a^{4}+\frac{5840969643027}{32}a^{3}-92186614891a^{2}+\frac{198101648751}{8}a-\frac{5543468093}{2}$, $\frac{7449985813}{524288}a^{20}+\frac{2425723765}{262144}a^{19}+\frac{45489698611}{131072}a^{18}-\frac{88496783}{65536}a^{17}-\frac{67166005401}{131072}a^{16}+\frac{22830313605}{65536}a^{15}-\frac{201151639985}{4096}a^{14}+\frac{135654412209}{2048}a^{13}-\frac{3749394933721}{32768}a^{12}+\frac{3040573916819}{16384}a^{11}+\frac{13461304590213}{8192}a^{10}-\frac{19307948670463}{4096}a^{9}+\frac{55364974699175}{8192}a^{8}-\frac{36015022663111}{4096}a^{7}-\frac{3395437186797}{512}a^{6}+\frac{29652529875883}{512}a^{5}-\frac{53707417684239}{512}a^{4}+\frac{24351680087993}{256}a^{3}-\frac{3064508062101}{64}a^{2}+\frac{102552659547}{8}a-\frac{22879676253}{16}$, $\frac{72296629}{32768}a^{20}+\frac{184522555}{131072}a^{19}+\frac{1764559417}{32768}a^{18}-\frac{30819005}{32768}a^{17}-\frac{163887797}{2048}a^{16}+\frac{1797150785}{32768}a^{15}-\frac{15616708757}{2048}a^{14}+\frac{21267522307}{2048}a^{13}-\frac{36532493117}{2048}a^{12}+\frac{237591415033}{8192}a^{11}+\frac{521996235709}{2048}a^{10}-\frac{1506150436239}{2048}a^{9}+\frac{541061058131}{512}a^{8}-\frac{2814660882439}{2048}a^{7}-\frac{260484888913}{256}a^{6}+\frac{1153736872175}{128}a^{5}-\frac{2098162184279}{128}a^{4}+\frac{1909438946797}{128}a^{3}-\frac{120566433325}{16}a^{2}+\frac{32392267851}{16}a-\frac{1813253005}{8}$, $\frac{103521073}{262144}a^{20}+\frac{17350959}{65536}a^{19}+\frac{632732119}{65536}a^{18}+\frac{1260477}{8192}a^{17}-\frac{925611917}{65536}a^{16}+\frac{38827163}{4096}a^{15}-\frac{11179892641}{8192}a^{14}+\frac{7432582631}{4096}a^{13}-\frac{51784690253}{16384}a^{12}+\frac{20923563471}{4096}a^{11}+\frac{187333079173}{4096}a^{10}-\frac{133203630219}{1024}a^{9}+\frac{761331838843}{4096}a^{8}-\frac{123880189571}{512}a^{7}-\frac{96006582209}{512}a^{6}+\frac{205310044783}{128}a^{5}-\frac{739239013975}{256}a^{4}+\frac{166690759131}{64}a^{3}-\frac{41729120539}{32}a^{2}+\frac{5555085961}{16}a-\frac{154037209}{4}$, $\frac{1513189163}{65536}a^{20}+\frac{1959940109}{131072}a^{19}+\frac{18475604623}{32768}a^{18}-\frac{140346847}{32768}a^{17}-\frac{13664009025}{16384}a^{16}+\frac{18618562095}{32768}a^{15}-\frac{326854869285}{4096}a^{14}+\frac{55252538127}{512}a^{13}-\frac{762384110195}{4096}a^{12}+\frac{2474715079071}{8192}a^{11}+\frac{5466820980291}{2048}a^{10}-\frac{15707342667277}{2048}a^{9}+\frac{11266890373641}{1024}a^{8}-\frac{29313571004665}{2048}a^{7}-\frac{1374879888351}{128}a^{6}+\frac{6026701689897}{64}a^{5}-\frac{21855552196189}{128}a^{4}+\frac{19838367749151}{128}a^{3}-\frac{1249452930457}{16}a^{2}+\frac{334820711449}{16}a-\frac{18693023119}{8}$, $\frac{1084305019}{131072}a^{20}+\frac{707036957}{131072}a^{19}+\frac{6621112209}{32768}a^{18}-\frac{19794777}{32768}a^{17}-\frac{9771052291}{32768}a^{16}+\frac{6640726363}{32768}a^{15}-\frac{234211781523}{8192}a^{14}+\frac{157849297519}{4096}a^{13}-\frac{545587886051}{8192}a^{12}+\frac{884699456127}{8192}a^{11}+\frac{1959337332765}{2048}a^{10}-\frac{5618552832079}{2048}a^{9}+\frac{8054604520297}{2048}a^{8}-\frac{10479337133413}{2048}a^{7}-\frac{1978181889405}{512}a^{6}+\frac{8630119129141}{256}a^{5}-\frac{7813645404387}{128}a^{4}+\frac{7084239182061}{128}a^{3}-\frac{111418816977}{4}a^{2}+\frac{119295589715}{16}a-\frac{6652771909}{8}$, $\frac{3940743519}{524288}a^{20}+\frac{1290899771}{262144}a^{19}+\frac{24067051893}{131072}a^{18}+\frac{2166755}{65536}a^{17}-\frac{35470887563}{131072}a^{16}+\frac{12022854147}{65536}a^{15}-\frac{212800264959}{8192}a^{14}+\frac{143091452943}{4096}a^{13}-\frac{1980717211771}{32768}a^{12}+\frac{1605177312381}{16384}a^{11}+\frac{7122738315139}{8192}a^{10}-\frac{10198393380109}{4096}a^{9}+\frac{29222434533141}{8192}a^{8}-\frac{19011286097121}{4096}a^{7}-\frac{450644229107}{128}a^{6}+\frac{15674054983531}{512}a^{5}-\frac{28353493263209}{512}a^{4}+\frac{12841261984699}{256}a^{3}-\frac{1614131694607}{64}a^{2}+\frac{13487841265}{2}a-\frac{12021365975}{16}$, $\frac{294871193}{262144}a^{20}+\frac{103466537}{131072}a^{19}+\frac{1805570665}{65536}a^{18}+\frac{43834131}{32768}a^{17}-\frac{2591346957}{65536}a^{16}+\frac{860266025}{32768}a^{15}-\frac{31842719061}{8192}a^{14}+\frac{20672905359}{4096}a^{13}-\frac{146348011573}{16384}a^{12}+\frac{117326438935}{8192}a^{11}+\frac{534767110239}{4096}a^{10}-\frac{750036770017}{2048}a^{9}+\frac{2134250936499}{4096}a^{8}-\frac{1390419154435}{2048}a^{7}-\frac{280557499251}{512}a^{6}+\frac{581328605399}{128}a^{5}-\frac{2074219563013}{256}a^{4}+\frac{928449879143}{128}a^{3}-\frac{115415631153}{32}a^{2}+\frac{1908150857}{2}a-\frac{841420211}{8}$, $\frac{144749773}{524288}a^{20}+\frac{47288543}{262144}a^{19}+\frac{883999199}{131072}a^{18}-\frac{668773}{65536}a^{17}-\frac{1302305345}{131072}a^{16}+\frac{443520595}{65536}a^{15}-\frac{977065653}{1024}a^{14}+\frac{1315726821}{1024}a^{13}-\frac{72846696209}{32768}a^{12}+\frac{59012467041}{16384}a^{11}+\frac{261568987873}{8192}a^{10}-\frac{374838343297}{4096}a^{9}+\frac{1074878421455}{8192}a^{8}-\frac{699255322057}{4096}a^{7}-\frac{66060317861}{512}a^{6}+\frac{575850695047}{512}a^{5}-\frac{1042594558099}{512}a^{4}+\frac{472664509359}{256}a^{3}-\frac{59485777409}{64}a^{2}+\frac{3982341971}{16}a-\frac{444427187}{16}$, $\frac{13883726485}{524288}a^{20}+\frac{4453874325}{262144}a^{19}+\frac{84731175147}{131072}a^{18}-\frac{585832679}{65536}a^{17}-\frac{125704738521}{131072}a^{16}+\frac{42976647653}{65536}a^{15}-\frac{93718186721}{1024}a^{14}+\frac{127301059555}{1024}a^{13}-\frac{7007812169081}{32768}a^{12}+\frac{5693405644499}{16384}a^{11}+\frac{25067783696781}{8192}a^{10}-\frac{36108544152455}{4096}a^{9}+\frac{103707371553255}{8192}a^{8}-\frac{67443593795111}{4096}a^{7}-\frac{6273180034483}{512}a^{6}+\frac{55355811829519}{512}a^{5}-\frac{100558373789495}{512}a^{4}+\frac{45712218663745}{256}a^{3}-\frac{5767153764757}{64}a^{2}+\frac{193487870399}{8}a-\frac{43279428197}{16}$
|
| |
| Regulator: | \( 26033728843700 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{13}\cdot(2\pi)^{4}\cdot 26033728843700 \cdot 1}{2\cdot\sqrt{8866863017363332031653762708238323679232}}\cr\approx \mathstrut & 1.76494346653112 \end{aligned}\] (assuming GRH)
Galois group
$C_3^7.(C_2^7.\GL(3,2))$ (as 21T147):
| A non-solvable group of order 47029248 |
| The 228 conjugacy class representatives for $C_3^7.(C_2^7.\GL(3,2))$ |
| Character table for $C_3^7.(C_2^7.\GL(3,2))$ |
Intermediate fields
| 7.7.670188544.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.14.0.1}{14} }{,}\,{\href{/padicField/5.7.0.1}{7} }$ | ${\href{/padicField/7.14.0.1}{14} }{,}\,{\href{/padicField/7.7.0.1}{7} }$ | R | ${\href{/padicField/13.14.0.1}{14} }{,}\,{\href{/padicField/13.7.0.1}{7} }$ | $21$ | ${\href{/padicField/19.9.0.1}{9} }{,}\,{\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{3}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.12.0.1}{12} }{,}\,{\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.3.0.1}{3} }^{4}{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.9.0.1}{9} }{,}\,{\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ | $21$ | ${\href{/padicField/43.9.0.1}{9} }{,}\,{\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }^{4}{,}\,{\href{/padicField/47.1.0.1}{1} }^{3}$ | ${\href{/padicField/53.9.0.1}{9} }{,}\,{\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.3.0.1}{3} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.4.0.1}{4} }^{3}{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.3.2a1.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
| 2.1.6.10a1.6 | $x^{6} + 2 x^{5} + 4 x^{4} + 4 x + 2$ | $6$ | $1$ | $10$ | $S_4$ | $$[\frac{8}{3}, \frac{8}{3}]_{3}^{2}$$ | |
| 2.1.12.26a1.29 | $x^{12} + 4 x^{6} + 4 x^{5} + 4 x^{3} + 4 x^{2} + 2$ | $12$ | $1$ | $26$ | 12T100 | $$[\frac{4}{3}, \frac{4}{3}, 2, \frac{8}{3}, \frac{8}{3}]_{3}^{2}$$ | |
|
\(3\)
| 3.7.3.21a258.1 | $x^{21} + 6 x^{16} + 3 x^{14} + 3 x^{13} + 6 x^{12} + 18 x^{11} + 18 x^{9} + 9 x^{8} + 18 x^{7} + 23 x^{6} + 6 x^{5} + 30 x^{4} + 6 x^{3} + 18 x^{2} + 3 x + 7$ | $3$ | $7$ | $21$ | not computed | not computed |
|
\(11\)
| $\Q_{11}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 11.1.2.1a1.2 | $x^{2} + 22$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 11.3.1.0a1.1 | $x^{3} + 2 x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 11.3.1.0a1.1 | $x^{3} + 2 x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 11.6.1.0a1.1 | $x^{6} + 3 x^{4} + 4 x^{3} + 6 x^{2} + 7 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | |
| 11.6.1.0a1.1 | $x^{6} + 3 x^{4} + 4 x^{3} + 6 x^{2} + 7 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | |
|
\(809\)
| $\Q_{809}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{809}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{809}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{809}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{809}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $2$ | $2$ | $2$ |