Normalized defining polynomial
\( x^{21} + 24 x^{19} - 16 x^{18} - 36 x^{17} + 48 x^{16} - 3472 x^{15} + 6912 x^{14} - 11088 x^{13} + 18304 x^{12} + 107136 x^{11} - 407040 x^{10} + 691648 x^{9} - 928512 x^{8} - 63744 x^{7} + 4379648 x^{6} - 10036224 x^{5} + 11501568 x^{4} - 7729152 x^{3} + 3096576 x^{2} - 688128 x + 65536 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8866863017363332031653762708238323679232=2^{38}\cdot 3^{21}\cdot 11\cdot 809^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 809$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{16} a^{7} - \frac{1}{8} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{8}$, $\frac{1}{32} a^{9} - \frac{1}{2} a$, $\frac{1}{32} a^{10}$, $\frac{1}{64} a^{11} - \frac{1}{4} a^{3}$, $\frac{1}{64} a^{12}$, $\frac{1}{128} a^{13} - \frac{1}{8} a^{5}$, $\frac{1}{256} a^{14} - \frac{1}{64} a^{10} - \frac{1}{16} a^{6} - \frac{1}{4} a^{2}$, $\frac{1}{512} a^{15} - \frac{1}{128} a^{11} - \frac{1}{32} a^{7} - \frac{1}{8} a^{3}$, $\frac{1}{2048} a^{16} - \frac{1}{1024} a^{15} - \frac{1}{512} a^{14} - \frac{1}{256} a^{13} - \frac{1}{512} a^{12} - \frac{1}{256} a^{11} - \frac{1}{128} a^{8} + \frac{1}{64} a^{7} + \frac{1}{32} a^{6} + \frac{1}{16} a^{5} - \frac{1}{32} a^{4} - \frac{1}{16} a^{3}$, $\frac{1}{8192} a^{17} - \frac{1}{512} a^{14} + \frac{3}{2048} a^{13} + \frac{3}{512} a^{12} - \frac{3}{512} a^{11} - \frac{1}{64} a^{10} + \frac{7}{512} a^{9} + \frac{1}{64} a^{8} - \frac{1}{32} a^{7} - \frac{1}{16} a^{6} + \frac{11}{128} a^{5} - \frac{3}{32} a^{4} - \frac{3}{32} a^{3} - \frac{1}{8} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{32768} a^{18} - \frac{1}{16384} a^{17} - \frac{1}{2048} a^{15} - \frac{5}{8192} a^{14} + \frac{3}{4096} a^{13} - \frac{1}{2048} a^{12} + \frac{7}{1024} a^{11} + \frac{23}{2048} a^{10} - \frac{3}{1024} a^{9} + \frac{1}{64} a^{8} + \frac{11}{512} a^{6} - \frac{1}{256} a^{5} - \frac{5}{128} a^{4} + \frac{9}{64} a^{3} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{131072} a^{19} - \frac{1}{32768} a^{17} - \frac{1}{8192} a^{16} + \frac{19}{32768} a^{15} - \frac{1}{8192} a^{14} - \frac{15}{4096} a^{13} - \frac{13}{2048} a^{12} + \frac{19}{8192} a^{11} - \frac{11}{1024} a^{10} + \frac{5}{2048} a^{9} + \frac{1}{128} a^{8} + \frac{43}{2048} a^{7} + \frac{5}{512} a^{6} - \frac{19}{256} a^{5} - \frac{7}{64} a^{4} + \frac{1}{128} a^{3} + \frac{1}{16} a^{2} + \frac{5}{16} a - \frac{1}{8}$, $\frac{1}{524288} a^{20} - \frac{1}{262144} a^{19} - \frac{1}{131072} a^{18} - \frac{1}{65536} a^{17} + \frac{27}{131072} a^{16} + \frac{43}{65536} a^{15} - \frac{7}{8192} a^{14} + \frac{1}{4096} a^{13} + \frac{251}{32768} a^{12} - \frac{127}{16384} a^{11} - \frac{15}{8192} a^{10} + \frac{3}{4096} a^{9} - \frac{117}{8192} a^{8} + \frac{31}{4096} a^{7} + \frac{1}{128} a^{6} - \frac{59}{512} a^{5} - \frac{35}{512} a^{4} - \frac{13}{256} a^{3} + \frac{3}{64} a^{2} - \frac{3}{16} a - \frac{7}{16}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26033728843700 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 47029248 |
| The 228 conjugacy class representatives for t21n147 are not computed |
| Character table for t21n147 is not computed |
Intermediate fields
| 7.7.670188544.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.10.2 | $x^{6} + 2 x^{5} + 2 x^{4} + 2 x^{2} + 2$ | $6$ | $1$ | $10$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.12.26.67 | $x^{12} + 2 x^{8} + 4 x^{7} + 4 x^{5} + 2 x^{4} + 4 x^{3} - 2$ | $12$ | $1$ | $26$ | 12T100 | $[4/3, 4/3, 2, 8/3, 8/3]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 809 | Data not computed | ||||||