Properties

Label 21T147
Order \(47029248\)
n \(21\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $21$
Transitive number $t$ :  $147$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,12,6)(2,11,4)(3,10,5)(7,8,9)(13,20,18,15,19,17,14,21,16), (1,12,19,8,18,6,13,3,10,20,7,17,4,15)(2,11,21,9,16,5,14)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
168:  $\GL(3,2)$
336:  14T17
1344:  $C_2^3:\GL(3,2)$
2688:  14T43
10752:  14T50
21504:  14T51

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 7: $\GL(3,2)$

Low degree siblings

42T3339, 42T3340, 42T3341, 42T3342, 42T3343, 42T3344, 42T3345, 42T3346

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 228 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $47029248=2^{10} \cdot 3^{8} \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.