Normalized defining polynomial
\( x^{21} - 12 x^{19} - 8 x^{18} - 324 x^{17} - 432 x^{16} + 2880 x^{15} + 6048 x^{14} + 37728 x^{13} + 90752 x^{12} - 96768 x^{11} - 582144 x^{10} - 1895872 x^{9} - 4845312 x^{8} - 6218496 x^{7} - 1158144 x^{6} + 7271424 x^{5} + 10764288 x^{4} + 7647232 x^{3} + 3096576 x^{2} + 688128 x + 65536 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8830806594437225156672627375869213526379397644288=2^{35}\cdot 3^{40}\cdot 7\cdot 13^{15}\cdot 59\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $214.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{16} a^{7} - \frac{1}{8} a^{5} - \frac{1}{2} a$, $\frac{1}{16} a^{8}$, $\frac{1}{32} a^{9} - \frac{1}{8} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{32} a^{10}$, $\frac{1}{64} a^{11} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{64} a^{12}$, $\frac{1}{128} a^{13} - \frac{1}{8} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{256} a^{14} - \frac{1}{64} a^{10} - \frac{1}{4} a^{2}$, $\frac{1}{512} a^{15} - \frac{1}{128} a^{11} - \frac{1}{8} a^{3}$, $\frac{1}{2048} a^{16} - \frac{1}{1024} a^{15} - \frac{1}{256} a^{13} - \frac{1}{512} a^{12} - \frac{1}{256} a^{11} - \frac{1}{128} a^{10} + \frac{1}{64} a^{8} - \frac{1}{32} a^{7} - \frac{1}{16} a^{6} - \frac{1}{8} a^{5} + \frac{1}{32} a^{4} + \frac{1}{16} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8192} a^{17} - \frac{1}{2048} a^{15} - \frac{1}{1024} a^{14} + \frac{3}{2048} a^{13} + \frac{1}{512} a^{12} - \frac{1}{256} a^{11} - \frac{3}{256} a^{10} - \frac{3}{256} a^{9} + \frac{1}{64} a^{8} - \frac{1}{32} a^{7} - \frac{15}{128} a^{5} + \frac{1}{32} a^{4} - \frac{1}{32} a^{3} - \frac{1}{8} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{32768} a^{18} - \frac{1}{16384} a^{17} - \frac{1}{8192} a^{16} + \frac{7}{8192} a^{14} - \frac{1}{4096} a^{13} - \frac{1}{512} a^{12} + \frac{7}{1024} a^{11} - \frac{13}{1024} a^{10} - \frac{3}{512} a^{9} - \frac{1}{64} a^{7} + \frac{1}{512} a^{6} + \frac{17}{256} a^{5} - \frac{3}{128} a^{4} - \frac{1}{64} a^{3} + \frac{1}{8} a^{2} - \frac{1}{4}$, $\frac{1}{131072} a^{19} - \frac{1}{16384} a^{17} - \frac{1}{16384} a^{16} - \frac{25}{32768} a^{15} + \frac{3}{8192} a^{14} + \frac{27}{8192} a^{13} + \frac{3}{4096} a^{12} - \frac{15}{4096} a^{11} - \frac{1}{128} a^{10} - \frac{3}{1024} a^{9} + \frac{7}{256} a^{8} + \frac{49}{2048} a^{7} + \frac{9}{512} a^{6} - \frac{25}{256} a^{5} - \frac{1}{64} a^{4} + \frac{27}{128} a^{3} - \frac{3}{16} a^{2} - \frac{5}{16} a - \frac{1}{8}$, $\frac{1}{524288} a^{20} - \frac{1}{262144} a^{19} - \frac{1}{65536} a^{18} + \frac{1}{65536} a^{17} - \frac{21}{131072} a^{16} - \frac{33}{65536} a^{15} + \frac{21}{32768} a^{14} - \frac{3}{2048} a^{13} + \frac{43}{16384} a^{12} + \frac{31}{8192} a^{11} - \frac{19}{4096} a^{10} + \frac{17}{2048} a^{9} + \frac{65}{8192} a^{8} - \frac{31}{4096} a^{7} + \frac{15}{512} a^{6} + \frac{55}{512} a^{5} - \frac{33}{512} a^{4} + \frac{9}{256} a^{3} + \frac{9}{64} a^{2} - \frac{3}{8} a + \frac{1}{16}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 616524970790000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 11757312 |
| The 168 conjugacy class representatives for t21n142 are not computed |
| Character table for t21n142 is not computed |
Intermediate fields
| 7.7.138584369664.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.12.24.302 | $x^{12} - 16 x^{11} - 12 x^{10} - 20 x^{9} - 24 x^{7} - 20 x^{6} + 8 x^{5} - 28 x^{4} - 16 x^{2} + 32 x - 24$ | $4$ | $3$ | $24$ | $C_2^2 \times A_4$ | $[2, 2, 3]^{6}$ | |
| 3 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 7.12.0.1 | $x^{12} + 3 x^{2} - 2 x + 3$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $13$ | 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 13.6.5.5 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.5.5 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.5.5 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 59 | Data not computed | ||||||