Normalized defining polynomial
\( x^{21} - 12 x^{19} - 8 x^{18} - 324 x^{17} - 432 x^{16} + 2880 x^{15} + 6048 x^{14} + 37728 x^{13} + \cdots + 65536 \)
Invariants
| Degree: | $21$ |
| |
| Signature: | $[13, 4]$ |
| |
| Discriminant: |
\(8830806594437225156672627375869213526379397644288\)
\(\medspace = 2^{35}\cdot 3^{40}\cdot 7\cdot 13^{15}\cdot 59\)
|
| |
| Root discriminant: | \(214.17\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(3\), \(7\), \(13\), \(59\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{10738}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2}a^{2}$, $\frac{1}{2}a^{3}$, $\frac{1}{4}a^{4}$, $\frac{1}{4}a^{5}$, $\frac{1}{8}a^{6}$, $\frac{1}{16}a^{7}-\frac{1}{8}a^{5}-\frac{1}{2}a$, $\frac{1}{16}a^{8}$, $\frac{1}{32}a^{9}-\frac{1}{8}a^{5}-\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{32}a^{10}$, $\frac{1}{64}a^{11}-\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{64}a^{12}$, $\frac{1}{128}a^{13}-\frac{1}{8}a^{5}-\frac{1}{4}a^{3}$, $\frac{1}{256}a^{14}-\frac{1}{64}a^{10}-\frac{1}{4}a^{2}$, $\frac{1}{512}a^{15}-\frac{1}{128}a^{11}-\frac{1}{8}a^{3}$, $\frac{1}{2048}a^{16}-\frac{1}{1024}a^{15}-\frac{1}{256}a^{13}-\frac{1}{512}a^{12}-\frac{1}{256}a^{11}-\frac{1}{128}a^{10}+\frac{1}{64}a^{8}-\frac{1}{32}a^{7}-\frac{1}{16}a^{6}-\frac{1}{8}a^{5}+\frac{1}{32}a^{4}+\frac{1}{16}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{8192}a^{17}-\frac{1}{2048}a^{15}-\frac{1}{1024}a^{14}+\frac{3}{2048}a^{13}+\frac{1}{512}a^{12}-\frac{1}{256}a^{11}-\frac{3}{256}a^{10}-\frac{3}{256}a^{9}+\frac{1}{64}a^{8}-\frac{1}{32}a^{7}-\frac{15}{128}a^{5}+\frac{1}{32}a^{4}-\frac{1}{32}a^{3}-\frac{1}{8}a^{2}-\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{32768}a^{18}-\frac{1}{16384}a^{17}-\frac{1}{8192}a^{16}+\frac{7}{8192}a^{14}-\frac{1}{4096}a^{13}-\frac{1}{512}a^{12}+\frac{7}{1024}a^{11}-\frac{13}{1024}a^{10}-\frac{3}{512}a^{9}-\frac{1}{64}a^{7}+\frac{1}{512}a^{6}+\frac{17}{256}a^{5}-\frac{3}{128}a^{4}-\frac{1}{64}a^{3}+\frac{1}{8}a^{2}-\frac{1}{4}$, $\frac{1}{131072}a^{19}-\frac{1}{16384}a^{17}-\frac{1}{16384}a^{16}-\frac{25}{32768}a^{15}+\frac{3}{8192}a^{14}+\frac{27}{8192}a^{13}+\frac{3}{4096}a^{12}-\frac{15}{4096}a^{11}-\frac{1}{128}a^{10}-\frac{3}{1024}a^{9}+\frac{7}{256}a^{8}+\frac{49}{2048}a^{7}+\frac{9}{512}a^{6}-\frac{25}{256}a^{5}-\frac{1}{64}a^{4}+\frac{27}{128}a^{3}-\frac{3}{16}a^{2}-\frac{5}{16}a-\frac{1}{8}$, $\frac{1}{524288}a^{20}-\frac{1}{262144}a^{19}-\frac{1}{65536}a^{18}+\frac{1}{65536}a^{17}-\frac{21}{131072}a^{16}-\frac{33}{65536}a^{15}+\frac{21}{32768}a^{14}-\frac{3}{2048}a^{13}+\frac{43}{16384}a^{12}+\frac{31}{8192}a^{11}-\frac{19}{4096}a^{10}+\frac{17}{2048}a^{9}+\frac{65}{8192}a^{8}-\frac{31}{4096}a^{7}+\frac{15}{512}a^{6}+\frac{55}{512}a^{5}-\frac{33}{512}a^{4}+\frac{9}{256}a^{3}+\frac{9}{64}a^{2}-\frac{3}{8}a+\frac{1}{16}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $16$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{18206775}{16384}a^{20}-\frac{11291481}{16384}a^{19}-\frac{211511331}{16384}a^{18}-\frac{3608793}{4096}a^{17}-\frac{736211673}{2048}a^{16}-\frac{1053220185}{4096}a^{15}+\frac{13764756015}{4096}a^{14}+\frac{4747994229}{1024}a^{13}+\frac{19990387037}{512}a^{12}+\frac{4904340183}{64}a^{11}-\frac{79424405991}{512}a^{10}-\frac{70501511461}{128}a^{9}-\frac{451804038165}{256}a^{8}-\frac{1098007945005}{256}a^{7}-\frac{1087403811047}{256}a^{6}+\frac{43300927053}{32}a^{5}+\frac{463658121315}{64}a^{4}+\frac{119422921803}{16}a^{3}+\frac{30876190659}{8}a^{2}+\frac{4163485941}{4}a+116956393$, $\frac{415055421}{262144}a^{20}-\frac{136934631}{131072}a^{19}-\frac{299988603}{16384}a^{18}-\frac{19190925}{32768}a^{17}-\frac{33594531057}{65536}a^{16}-\frac{11329402851}{32768}a^{15}+\frac{78444924903}{16384}a^{14}+\frac{13141258479}{2048}a^{13}+\frac{454678980291}{8192}a^{12}+\frac{438545699181}{4096}a^{11}-\frac{458430060717}{2048}a^{10}-\frac{792567185551}{1024}a^{9}-\frac{10203694323363}{4096}a^{8}-\frac{12345517380621}{2048}a^{7}-\frac{3004901869805}{512}a^{6}+\frac{130388518017}{64}a^{5}+\frac{2602934776233}{256}a^{4}+\frac{1322939996241}{128}a^{3}+\frac{169302753693}{32}a^{2}+\frac{11308533039}{8}a+\frac{1258983689}{8}$, $\frac{238538277}{262144}a^{20}-\frac{88055181}{131072}a^{19}-\frac{170850627}{16384}a^{18}+\frac{13930947}{32768}a^{17}-\frac{19339045569}{65536}a^{16}-\frac{5743150317}{32768}a^{15}+\frac{45080975835}{16384}a^{14}+\frac{14221132107}{4096}a^{13}+\frac{260127361975}{8192}a^{12}+\frac{242185499127}{4096}a^{11}-\frac{270044793117}{2048}a^{10}-\frac{442956460529}{1024}a^{9}-\frac{5754959145243}{4096}a^{8}-\frac{6901793275971}{2048}a^{7}-\frac{1620259858451}{512}a^{6}+\frac{20729033325}{16}a^{5}+\frac{1450996964577}{256}a^{4}+\frac{716722924755}{128}a^{3}+\frac{89705646477}{32}a^{2}+733211433a+\frac{639008555}{8}$, $\frac{1761820119}{262144}a^{20}-\frac{613261809}{131072}a^{19}-\frac{2536052795}{32768}a^{18}+\frac{3774519}{32768}a^{17}-\frac{142711490331}{65536}a^{16}-\frac{45463047741}{32768}a^{15}+\frac{332961785343}{16384}a^{14}+\frac{108542608647}{4096}a^{13}+\frac{1926015726289}{8192}a^{12}+\frac{1827831086415}{4096}a^{11}-\frac{1968293136069}{2048}a^{10}-\frac{3321325789631}{1024}a^{9}-\frac{42940386870921}{4096}a^{8}-\frac{51743760379203}{2048}a^{7}-\frac{3097858934183}{128}a^{6}+\frac{2321921278089}{256}a^{5}+\frac{10894999038801}{256}a^{4}+\frac{5467211076757}{128}a^{3}+\frac{692873430327}{32}a^{2}+\frac{45857445057}{8}a+\frac{5058574613}{8}$, $\frac{142988247}{32768}a^{20}-\frac{46949625}{16384}a^{19}-\frac{103383081}{2048}a^{18}-\frac{7217721}{4096}a^{17}-\frac{11572746231}{8192}a^{16}-\frac{3921442609}{4096}a^{15}+\frac{27024103989}{2048}a^{14}+\frac{9075765423}{512}a^{13}+\frac{156669479891}{1024}a^{12}+\frac{151317618561}{512}a^{11}-\frac{157766077521}{256}a^{10}-\frac{273341737259}{128}a^{9}-\frac{3517914615921}{512}a^{8}-\frac{4257777924963}{256}a^{7}-\frac{1037823723303}{64}a^{6}+\frac{178855818903}{32}a^{5}+\frac{448896750669}{16}a^{4}+\frac{228419769381}{8}a^{3}+\frac{29258759817}{2}a^{2}+3912120909a+435934711$, $\frac{823371021}{524288}a^{20}-\frac{289777977}{262144}a^{19}-\frac{1184136721}{65536}a^{18}+\frac{10217637}{65536}a^{17}-\frac{66705886977}{131072}a^{16}-\frac{20985991937}{65536}a^{15}+\frac{155604522609}{32768}a^{14}+\frac{25213377573}{4096}a^{13}+\frac{899710628391}{16384}a^{12}+\frac{850876626807}{8192}a^{11}-\frac{922079630079}{4096}a^{10}-\frac{1547930501039}{2048}a^{9}-\frac{20030923482867}{8192}a^{8}-\frac{24116486191743}{4096}a^{7}-\frac{2877481284901}{512}a^{6}+\frac{1095832197999}{512}a^{5}+\frac{5076416980635}{512}a^{4}+\frac{2540342485393}{256}a^{3}+\frac{321252685173}{64}a^{2}+\frac{5304606975}{4}a+\frac{2335761801}{16}$, $\frac{16963540251}{262144}a^{20}-\frac{5060707383}{131072}a^{19}-\frac{24698898819}{32768}a^{18}-\frac{2215522521}{32768}a^{17}-\frac{1371222211303}{65536}a^{16}-\frac{507013824367}{32768}a^{15}+\frac{3206083407567}{16384}a^{14}+\frac{17575316635}{64}a^{13}+\frac{18651352575905}{8192}a^{12}+\frac{18487921356073}{4096}a^{11}-\frac{18357738232537}{2048}a^{10}-\frac{33110380426333}{1024}a^{9}-\frac{423307301381093}{4096}a^{8}-\frac{515655290679073}{2048}a^{7}-\frac{64469165656813}{256}a^{6}+\frac{19473476990179}{256}a^{5}+\frac{108955011232405}{256}a^{4}+\frac{56574694642803}{128}a^{3}+\frac{7357049204143}{32}a^{2}+\frac{249378764777}{4}a+\frac{56346913515}{8}$, $\frac{18971846289}{262144}a^{20}-\frac{3273160187}{65536}a^{19}-\frac{3416027573}{4096}a^{18}-\frac{112571135}{32768}a^{17}-\frac{1536566954265}{65536}a^{16}-\frac{123569877677}{8192}a^{15}+\frac{3585464292581}{16384}a^{14}+\frac{2348498596951}{8192}a^{13}+\frac{20747185307405}{8192}a^{12}+\frac{9871600841291}{2048}a^{11}-\frac{21154921392365}{2048}a^{10}-\frac{17921097918919}{512}a^{9}-\frac{463065720046303}{4096}a^{8}-\frac{139595101630305}{512}a^{7}-\frac{67044710470611}{256}a^{6}+\frac{24808031105529}{256}a^{5}+\frac{117597070858557}{256}a^{4}+\frac{7392485208197}{16}a^{3}+\frac{7507583284627}{32}a^{2}+\frac{995364225269}{16}a+\frac{13747236329}{2}$, $\frac{4418774625}{32768}a^{20}-\frac{3057684253}{32768}a^{19}-\frac{50909481161}{32768}a^{18}-\frac{61019193}{16384}a^{17}-\frac{178949778591}{4096}a^{16}-\frac{229569948235}{8192}a^{15}+\frac{3340376884465}{8192}a^{14}+\frac{2184863887633}{4096}a^{13}+\frac{2415882231777}{512}a^{12}+\frac{143565312739}{16}a^{11}-\frac{19720400987619}{1024}a^{10}-\frac{33370175109113}{512}a^{9}-\frac{107805936335215}{512}a^{8}-\frac{259937348521937}{512}a^{7}-\frac{249474928624477}{512}a^{6}+\frac{46334848523721}{256}a^{5}+\frac{109479764297923}{128}a^{4}+\frac{55021516220493}{64}a^{3}+436328318756a^{2}+115642886126a+\frac{51085207469}{4}$, $\frac{15846613}{262144}a^{20}+\frac{2743361}{32768}a^{19}-\frac{28200527}{32768}a^{18}-\frac{44143889}{32768}a^{17}-\frac{1229446029}{65536}a^{16}-\frac{880567715}{16384}a^{15}+\frac{2982646339}{16384}a^{14}+\frac{5072723367}{8192}a^{13}+\frac{19479334045}{8192}a^{12}+\frac{8451708975}{1024}a^{11}-\frac{5905159915}{2048}a^{10}-\frac{25951943689}{512}a^{9}-\frac{581038408827}{4096}a^{8}-\frac{403863343489}{1024}a^{7}-\frac{301269128739}{512}a^{6}-\frac{9262786823}{64}a^{5}+\frac{176908135571}{256}a^{4}+\frac{31755989379}{32}a^{3}+\frac{19913300767}{32}a^{2}+\frac{3124930031}{16}a+25027128$, $\frac{2893485569}{524288}a^{20}-\frac{1012897319}{262144}a^{19}-\frac{4162740101}{65536}a^{18}+\frac{20679341}{65536}a^{17}-\frac{234405570397}{131072}a^{16}-\frac{74190570699}{65536}a^{15}+\frac{546765807001}{32768}a^{14}+\frac{177733539003}{8192}a^{13}+\frac{3162700352999}{16384}a^{12}+\frac{2995875254025}{8192}a^{11}-\frac{3235793423195}{4096}a^{10}-\frac{5446775538861}{2048}a^{9}-\frac{70464364045023}{8192}a^{8}-\frac{84867865159269}{4096}a^{7}-\frac{5073125110383}{256}a^{6}+\frac{3826494233877}{512}a^{5}+\frac{17864841544511}{512}a^{4}+\frac{8956288114807}{256}a^{3}+\frac{1134384368357}{64}a^{2}+\frac{75047198741}{16}a+\frac{8276258279}{16}$, $\frac{607239512601}{524288}a^{20}-\frac{208534792075}{262144}a^{19}-\frac{875052345753}{65536}a^{18}-\frac{6228358763}{65536}a^{17}-\frac{49177844850373}{131072}a^{16}-\frac{15902553684983}{65536}a^{15}+\frac{114764278508161}{32768}a^{14}+\frac{37678281052725}{8192}a^{13}+\frac{664178327006247}{16384}a^{12}+\frac{632977227929237}{8192}a^{11}-\frac{676446569769163}{4096}a^{10}-\frac{11\cdots 81}{2048}a^{9}-\frac{14\cdots 07}{8192}a^{8}-\frac{17\cdots 81}{4096}a^{7}-\frac{10\cdots 53}{256}a^{6}+\frac{790900570448269}{512}a^{5}+\frac{37\cdots 43}{512}a^{4}+\frac{18\cdots 31}{256}a^{3}+\frac{241062115714661}{64}a^{2}+\frac{15992032273227}{16}a+\frac{1768241238915}{16}$, $\frac{874785381035}{262144}a^{20}-\frac{301999917419}{131072}a^{19}-\frac{630021701697}{16384}a^{18}-\frac{4789375171}{32768}a^{17}-\frac{70851116093967}{65536}a^{16}-\frac{22778624866523}{32768}a^{15}+\frac{165324298449781}{16384}a^{14}+\frac{54129977870793}{4096}a^{13}+\frac{956627383657113}{8192}a^{12}+\frac{910192997219233}{4096}a^{11}-\frac{975550101814963}{2048}a^{10}-\frac{16\cdots 15}{1024}a^{9}-\frac{21\cdots 37}{4096}a^{8}-\frac{25\cdots 53}{2048}a^{7}-\frac{61\cdots 13}{512}a^{6}+\frac{143048256898457}{32}a^{5}+\frac{54\cdots 23}{256}a^{4}+\frac{27\cdots 97}{128}a^{3}+\frac{346052769931307}{32}a^{2}+2867261903049a+\frac{2534218755141}{8}$, $\frac{389462385291}{262144}a^{20}-\frac{133446128749}{131072}a^{19}-\frac{280663888759}{16384}a^{18}-\frac{4798450759}{32768}a^{17}-\frac{31539955268615}{65536}a^{16}-\frac{10224033950249}{32768}a^{15}+\frac{73605807118177}{16384}a^{14}+\frac{12096989624661}{2048}a^{13}+\frac{426019452967533}{8192}a^{12}+\frac{406286487371023}{4096}a^{11}-\frac{433636576707387}{2048}a^{10}-\frac{737050212658937}{1024}a^{9}-\frac{95\cdots 49}{4096}a^{8}-\frac{11\cdots 51}{2048}a^{7}-\frac{27\cdots 43}{512}a^{6}+\frac{253109752235863}{128}a^{5}+\frac{24\cdots 99}{256}a^{4}+\frac{12\cdots 39}{128}a^{3}+\frac{154854909253863}{32}a^{2}+\frac{10277306353989}{8}a+\frac{1136841025167}{8}$, $\frac{51053112485}{262144}a^{20}-\frac{512447987}{4096}a^{19}-\frac{18486754359}{8192}a^{18}-\frac{3548067935}{32768}a^{17}-\frac{4130723682309}{65536}a^{16}-\frac{715039999489}{16384}a^{15}+\frac{9649057445637}{16384}a^{14}+\frac{6549744670693}{8192}a^{13}+\frac{55983339805621}{8192}a^{12}+\frac{13602787968463}{1024}a^{11}-\frac{56075062021273}{2048}a^{10}-\frac{12260584802563}{128}a^{9}-\frac{12\cdots 99}{4096}a^{8}-\frac{763868479951699}{1024}a^{7}-\frac{93672665742149}{128}a^{6}+\frac{62631258213115}{256}a^{5}+\frac{322306089874137}{256}a^{4}+\frac{82400488535945}{64}a^{3}+\frac{21186618251243}{32}a^{2}+\frac{2842374799419}{16}a+\frac{79446548603}{4}$, $\frac{236513390003}{524288}a^{20}-\frac{75460651183}{262144}a^{19}-\frac{342741195515}{65536}a^{18}-\frac{17794989253}{65536}a^{17}-\frac{19134679362751}{131072}a^{16}-\frac{6666780631607}{65536}a^{15}+\frac{44700976694231}{32768}a^{14}+\frac{7609744562013}{4096}a^{13}+\frac{259418998893897}{16384}a^{12}+\frac{252604895925809}{8192}a^{11}-\frac{259418087741593}{4096}a^{10}-\frac{455075779360697}{2048}a^{9}-\frac{58\cdots 05}{8192}a^{8}-\frac{70\cdots 21}{4096}a^{7}-\frac{870823451690549}{512}a^{6}+\frac{288391796280777}{512}a^{5}+\frac{14\cdots 29}{512}a^{4}+\frac{765854911975863}{256}a^{3}+\frac{98568020519011}{64}a^{2}+\frac{1654707491865}{4}a+\frac{740778942095}{16}$
|
| |
| Regulator: | \( 616524970790000000 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{13}\cdot(2\pi)^{4}\cdot 616524970790000000 \cdot 1}{2\cdot\sqrt{8830806594437225156672627375869213526379397644288}}\cr\approx \mathstrut & 1.32443273411247 \end{aligned}\] (assuming GRH)
Galois group
$C_3^7:C_2\wr C_7.C_6$ (as 21T142):
| A solvable group of order 11757312 |
| The 168 conjugacy class representatives for $C_3^7:C_2\wr C_7.C_6$ |
| Character table for $C_3^7:C_2\wr C_7.C_6$ |
Intermediate fields
| 7.7.138584369664.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.14.0.1}{14} }{,}\,{\href{/padicField/5.7.0.1}{7} }$ | R | ${\href{/padicField/11.6.0.1}{6} }^{2}{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | R | ${\href{/padicField/17.9.0.1}{9} }{,}\,{\href{/padicField/17.3.0.1}{3} }^{3}{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.9.0.1}{9} }{,}\,{\href{/padicField/19.3.0.1}{3} }^{3}{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.9.0.1}{9} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.12.0.1}{12} }{,}\,{\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.4.0.1}{4} }^{3}{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.9.0.1}{9} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ | $18{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.12.0.1}{12} }{,}\,{\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }$ | ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.3.2a1.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
| 2.3.2.9a1.6 | $x^{6} + 2 x^{4} + 6 x^{3} + x^{2} + 6 x + 15$ | $2$ | $3$ | $9$ | $C_6$ | $$[3]^{3}$$ | |
| 2.3.4.24b17.2 | $x^{12} + 6 x^{10} + 4 x^{9} + 12 x^{8} + 20 x^{7} + 18 x^{6} + 32 x^{5} + 33 x^{4} + 28 x^{3} + 26 x^{2} + 20 x + 17$ | $4$ | $3$ | $24$ | $C_2^2 \times A_4$ | $$[2, 2, 3]^{6}$$ | |
|
\(3\)
| 3.1.21.40a1.648 | $x^{21} + 3 x^{20} + 18 x^{8} + 18 x^{7} + 18 x^{5} + 18 x^{4} + 9 x^{2} + 18 x + 3$ | $21$ | $1$ | $40$ | 21T99 | not computed |
|
\(7\)
| $\Q_{7}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 7.1.2.1a1.2 | $x^{2} + 21$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 7.6.1.0a1.1 | $x^{6} + x^{4} + 5 x^{3} + 4 x^{2} + 6 x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | |
| 7.12.1.0a1.1 | $x^{12} + 2 x^{8} + 5 x^{7} + 3 x^{6} + 2 x^{5} + 4 x^{4} + 5 x^{2} + 3$ | $1$ | $12$ | $0$ | $C_{12}$ | $$[\ ]^{12}$$ | |
|
\(13\)
| 13.3.1.0a1.1 | $x^{3} + 2 x + 11$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ |
| 13.1.6.5a1.6 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ | |
| 13.1.6.5a1.6 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ | |
| 13.1.6.5a1.6 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ | |
|
\(59\)
| $\Q_{59}$ | $x + 57$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 59.1.2.1a1.2 | $x^{2} + 118$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 59.3.1.0a1.1 | $x^{3} + 5 x + 57$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 59.3.1.0a1.1 | $x^{3} + 5 x + 57$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 59.3.1.0a1.1 | $x^{3} + 5 x + 57$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 59.9.1.0a1.1 | $x^{9} + x^{3} + 32 x^{2} + 47 x + 57$ | $1$ | $9$ | $0$ | $C_9$ | $$[\ ]^{9}$$ |