Properties

Label 21T142
Order \(11757312\)
n \(21\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $21$
Transitive number $t$ :  $142$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (4,14,7,6,13,8)(5,15,9)(10,18,21,12,16,20,11,17,19), (1,14)(2,13)(3,15)(4,12)(5,10,6,11)(8,9)(16,19,18,21)(17,20)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
3:  $C_3$
4:  $C_2^2$
6:  $C_6$ x 3
12:  $C_6\times C_2$
42:  $F_7$
84:  $F_7 \times C_2$
2688:  14T40
5376:  14T48

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 7: $F_7$

Low degree siblings

42T2703, 42T2704, 42T2705, 42T2706, 42T2707, 42T2708, 42T2709, 42T2717

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 168 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $11757312=2^{8} \cdot 3^{8} \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.