Normalized defining polynomial
\( x^{21} - 21 x^{19} - 3 x^{18} + 186 x^{17} + 45 x^{16} - 907 x^{15} - 270 x^{14} + 2685 x^{13} + \cdots - 1 \)
Invariants
| Degree: | $21$ |
| |
| Signature: | $[13, 4]$ |
| |
| Discriminant: |
\(40453417591156198845459427294648145741\)
\(\medspace = 7^{14}\cdot 59646183107903161080974909\)
|
| |
| Root discriminant: | \(61.77\) |
| |
| Galois root discriminant: | $7^{2/3}59646183107903161080974909^{1/2}\approx 28261162488532.168$ | ||
| Ramified primes: |
\(7\), \(59646183107903161080974909\)
|
| |
| Discriminant root field: | $\Q(\sqrt{59646\!\cdots\!74909}$) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3}a^{7}-\frac{1}{3}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{3}a^{8}-\frac{1}{3}a^{6}-\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{2}-\frac{1}{3}a$, $\frac{1}{3}a^{9}-\frac{1}{3}a^{6}-\frac{1}{3}a^{4}-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}+\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{3}a^{10}+\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{2}-\frac{1}{3}$, $\frac{1}{3}a^{11}+\frac{1}{3}a^{6}+\frac{1}{3}a^{5}+\frac{1}{3}a^{3}-\frac{1}{3}a$, $\frac{1}{3}a^{12}+\frac{1}{3}a^{6}+\frac{1}{3}a^{5}-\frac{1}{3}a^{4}-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{13}+\frac{1}{3}a^{6}+\frac{1}{3}a^{3}-\frac{1}{3}a^{2}+\frac{1}{3}$, $\frac{1}{9}a^{14}+\frac{1}{9}a^{12}+\frac{1}{9}a^{11}-\frac{1}{9}a^{9}+\frac{1}{9}a^{8}-\frac{1}{9}a^{7}-\frac{1}{9}a^{6}-\frac{2}{9}a^{4}+\frac{4}{9}a^{3}-\frac{2}{9}a^{2}+\frac{1}{9}a-\frac{2}{9}$, $\frac{1}{9}a^{15}+\frac{1}{9}a^{13}+\frac{1}{9}a^{12}-\frac{1}{9}a^{10}+\frac{1}{9}a^{9}-\frac{1}{9}a^{8}-\frac{1}{9}a^{7}-\frac{2}{9}a^{5}+\frac{4}{9}a^{4}-\frac{2}{9}a^{3}+\frac{1}{9}a^{2}-\frac{2}{9}a$, $\frac{1}{9}a^{16}+\frac{1}{9}a^{13}-\frac{1}{9}a^{12}+\frac{1}{9}a^{11}+\frac{1}{9}a^{10}+\frac{1}{9}a^{8}+\frac{1}{9}a^{7}-\frac{1}{9}a^{6}+\frac{4}{9}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{2}+\frac{2}{9}a+\frac{2}{9}$, $\frac{1}{9}a^{17}-\frac{1}{9}a^{13}-\frac{1}{9}a^{9}-\frac{1}{9}a^{6}+\frac{1}{3}a^{5}-\frac{4}{9}a^{4}+\frac{2}{9}a^{3}-\frac{2}{9}a^{2}-\frac{2}{9}a-\frac{4}{9}$, $\frac{1}{9}a^{18}+\frac{1}{9}a^{12}+\frac{1}{9}a^{11}-\frac{1}{9}a^{10}-\frac{1}{9}a^{9}+\frac{1}{9}a^{8}+\frac{1}{9}a^{7}+\frac{2}{9}a^{6}+\frac{2}{9}a^{5}-\frac{1}{3}a^{4}-\frac{4}{9}a^{3}-\frac{4}{9}a^{2}+\frac{4}{9}$, $\frac{1}{9}a^{19}+\frac{1}{9}a^{13}+\frac{1}{9}a^{12}-\frac{1}{9}a^{11}-\frac{1}{9}a^{10}+\frac{1}{9}a^{9}+\frac{1}{9}a^{8}-\frac{1}{9}a^{7}+\frac{2}{9}a^{6}-\frac{1}{9}a^{4}+\frac{2}{9}a^{3}+\frac{1}{9}a+\frac{1}{3}$, $\frac{1}{9}a^{20}+\frac{1}{9}a^{13}+\frac{1}{9}a^{12}+\frac{1}{9}a^{11}+\frac{1}{9}a^{10}-\frac{1}{9}a^{9}+\frac{1}{9}a^{8}-\frac{2}{9}a^{6}-\frac{4}{9}a^{5}+\frac{1}{9}a^{4}-\frac{4}{9}a^{3}-\frac{1}{3}a^{2}-\frac{4}{9}a+\frac{2}{9}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $16$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{3}a^{19}-\frac{1}{3}a^{18}-\frac{20}{3}a^{17}+\frac{17}{3}a^{16}+\frac{169}{3}a^{15}-\frac{124}{3}a^{14}-261a^{13}+171a^{12}+724a^{11}-\frac{1318}{3}a^{10}-\frac{3737}{3}a^{9}+\frac{2084}{3}a^{8}+\frac{4040}{3}a^{7}-\frac{1796}{3}a^{6}-\frac{2663}{3}a^{5}+\frac{623}{3}a^{4}+\frac{944}{3}a^{3}+\frac{17}{3}a^{2}-\frac{110}{3}a-\frac{16}{3}$, $\frac{1}{9}a^{20}+\frac{7}{9}a^{19}-\frac{28}{9}a^{18}-16a^{17}+\frac{307}{9}a^{16}+\frac{1246}{9}a^{15}-\frac{1810}{9}a^{14}-\frac{5885}{9}a^{13}+726a^{12}+\frac{16583}{9}a^{11}-\frac{15320}{9}a^{10}-3216a^{9}+2575a^{8}+\frac{31787}{9}a^{7}-\frac{20441}{9}a^{6}-\frac{21256}{9}a^{5}+\frac{2813}{3}a^{4}+\frac{7565}{9}a^{3}-\frac{746}{9}a^{2}-\frac{862}{9}a-\frac{82}{9}$, $a$, $\frac{4}{9}a^{20}-\frac{4}{9}a^{19}-9a^{18}+\frac{70}{9}a^{17}+\frac{694}{9}a^{16}-59a^{15}-\frac{3266}{9}a^{14}+\frac{770}{3}a^{13}+\frac{3071}{3}a^{12}-\frac{6311}{9}a^{11}-\frac{5360}{3}a^{10}+\frac{10799}{9}a^{9}+\frac{17423}{9}a^{8}-\frac{10595}{9}a^{7}-\frac{11227}{9}a^{6}+\frac{1670}{3}a^{5}+\frac{3773}{9}a^{4}-\frac{239}{3}a^{3}-\frac{409}{9}a^{2}-\frac{22}{9}a-\frac{8}{9}$, $a+1$, $3a^{20}+\frac{2}{9}a^{19}-\frac{571}{9}a^{18}-\frac{121}{9}a^{17}+\frac{5101}{9}a^{16}+\frac{1552}{9}a^{15}-\frac{25159}{9}a^{14}-\frac{8830}{9}a^{13}+\frac{25226}{3}a^{12}+\frac{9046}{3}a^{11}-\frac{145720}{9}a^{10}-\frac{16931}{3}a^{9}+\frac{60674}{3}a^{8}+\frac{65335}{9}a^{7}-\frac{46204}{3}a^{6}-\frac{18770}{3}a^{5}+\frac{53405}{9}a^{4}+\frac{8570}{3}a^{3}-\frac{1861}{3}a^{2}-\frac{1105}{3}a-\frac{236}{9}$, $\frac{17}{9}a^{20}-\frac{26}{9}a^{19}-37a^{18}+\frac{158}{3}a^{17}+306a^{16}-413a^{15}-\frac{12428}{9}a^{14}+\frac{5473}{3}a^{13}+\frac{33097}{9}a^{12}-\frac{44569}{9}a^{11}-\frac{52868}{9}a^{10}+\frac{75172}{9}a^{9}+\frac{49873}{9}a^{8}-\frac{75074}{9}a^{7}-\frac{8857}{3}a^{6}+\frac{40201}{9}a^{5}+\frac{7571}{9}a^{4}-\frac{9677}{9}a^{3}-\frac{983}{9}a^{2}+\frac{235}{3}a+\frac{62}{9}$, $\frac{20}{9}a^{20}-\frac{4}{9}a^{19}-\frac{419}{9}a^{18}+\frac{25}{9}a^{17}+\frac{3709}{9}a^{16}+\frac{136}{9}a^{15}-\frac{18100}{9}a^{14}-\frac{1612}{9}a^{13}+\frac{53632}{9}a^{12}+\frac{5692}{9}a^{11}-\frac{100912}{9}a^{10}-1272a^{9}+\frac{122032}{9}a^{8}+\frac{6269}{3}a^{7}-\frac{89603}{9}a^{6}-\frac{21838}{9}a^{5}+\frac{33527}{9}a^{4}+\frac{4042}{3}a^{3}-\frac{1174}{3}a^{2}-189a-\frac{115}{9}$, $a^{20}-\frac{2}{3}a^{19}-\frac{61}{3}a^{18}+\frac{31}{3}a^{17}+\frac{524}{3}a^{16}-\frac{203}{3}a^{15}-\frac{2473}{3}a^{14}+252a^{13}+2343a^{12}-594a^{11}-\frac{12529}{3}a^{10}+\frac{2515}{3}a^{9}+\frac{14204}{3}a^{8}-\frac{1348}{3}a^{7}-\frac{9782}{3}a^{6}-\frac{797}{3}a^{5}+\frac{3437}{3}a^{4}+\frac{1010}{3}a^{3}-\frac{289}{3}a^{2}-\frac{176}{3}a-\frac{13}{3}$, $\frac{43}{9}a^{20}-\frac{38}{9}a^{19}-\frac{869}{9}a^{18}+71a^{17}+\frac{7424}{9}a^{16}-\frac{4627}{9}a^{15}-\frac{34825}{9}a^{14}+\frac{6392}{3}a^{13}+\frac{98060}{9}a^{12}-\frac{49963}{9}a^{11}-\frac{171805}{9}a^{10}+\frac{80696}{9}a^{9}+\frac{189227}{9}a^{8}-\frac{70307}{9}a^{7}-\frac{126041}{9}a^{6}+\frac{22838}{9}a^{5}+\frac{44245}{9}a^{4}+\frac{2833}{9}a^{3}-\frac{1649}{3}a^{2}-\frac{1096}{9}a-\frac{14}{3}$, $\frac{2}{3}a^{20}+\frac{8}{9}a^{19}-15a^{18}-\frac{178}{9}a^{17}+\frac{1274}{9}a^{16}+\frac{541}{3}a^{15}-\frac{6638}{9}a^{14}-\frac{7894}{9}a^{13}+\frac{21256}{9}a^{12}+\frac{22510}{9}a^{11}-\frac{14699}{3}a^{10}-\frac{39604}{9}a^{9}+\frac{59669}{9}a^{8}+\frac{44849}{9}a^{7}-\frac{48664}{9}a^{6}-\frac{32056}{9}a^{5}+2174a^{4}+\frac{4129}{3}a^{3}-\frac{674}{3}a^{2}-\frac{496}{3}a-\frac{37}{3}$, $\frac{29}{9}a^{20}-\frac{26}{9}a^{19}-\frac{587}{9}a^{18}+\frac{440}{9}a^{17}+\frac{5027}{9}a^{16}-\frac{3214}{9}a^{15}-\frac{23665}{9}a^{14}+\frac{13475}{9}a^{13}+\frac{22324}{3}a^{12}-\frac{11888}{3}a^{11}-\frac{39374}{3}a^{10}+\frac{59084}{9}a^{9}+\frac{43700}{3}a^{8}-\frac{54533}{9}a^{7}-\frac{29320}{3}a^{6}+\frac{21820}{9}a^{5}+\frac{10342}{3}a^{4}-\frac{896}{9}a^{3}-\frac{3496}{9}a^{2}-\frac{136}{3}a-\frac{2}{3}$, $\frac{5}{3}a^{20}-\frac{13}{9}a^{19}-\frac{304}{9}a^{18}+\frac{73}{3}a^{17}+\frac{2606}{9}a^{16}-\frac{1594}{9}a^{15}-\frac{12277}{9}a^{14}+\frac{2225}{3}a^{13}+\frac{11587}{3}a^{12}-\frac{17687}{9}a^{11}-\frac{61315}{9}a^{10}+3255a^{9}+7553a^{8}-\frac{26720}{9}a^{7}-\frac{45416}{9}a^{6}+\frac{10088}{9}a^{5}+\frac{15887}{9}a^{4}+\frac{17}{3}a^{3}-\frac{1753}{9}a^{2}-\frac{269}{9}a-\frac{10}{9}$, $\frac{125}{9}a^{20}-\frac{37}{9}a^{19}-\frac{2606}{9}a^{18}+\frac{388}{9}a^{17}+\frac{7658}{3}a^{16}-\frac{1031}{9}a^{15}-\frac{37235}{3}a^{14}-\frac{1757}{9}a^{13}+\frac{109934}{3}a^{12}+\frac{13663}{9}a^{11}-\frac{618269}{9}a^{10}-\frac{35590}{9}a^{9}+\frac{745645}{9}a^{8}+\frac{79447}{9}a^{7}-\frac{548135}{9}a^{6}-\frac{110948}{9}a^{5}+\frac{68920}{3}a^{4}+\frac{66514}{9}a^{3}-\frac{22463}{9}a^{2}-\frac{9466}{9}a-\frac{629}{9}$, $\frac{22}{9}a^{20}+\frac{2}{9}a^{19}-\frac{466}{9}a^{18}-\frac{34}{3}a^{17}+\frac{1388}{3}a^{16}+\frac{419}{3}a^{15}-2279a^{14}-\frac{2324}{3}a^{13}+\frac{61490}{9}a^{12}+\frac{20914}{9}a^{11}-\frac{39212}{3}a^{10}-\frac{38287}{9}a^{9}+\frac{145289}{9}a^{8}+5434a^{7}-12057a^{6}-4724a^{5}+\frac{40352}{9}a^{4}+\frac{19663}{9}a^{3}-\frac{3671}{9}a^{2}-\frac{2564}{9}a-\frac{245}{9}$, $\frac{22}{9}a^{20}-\frac{16}{9}a^{19}-\frac{452}{9}a^{18}+\frac{89}{3}a^{17}+\frac{3922}{9}a^{16}-\frac{643}{3}a^{15}-\frac{6229}{3}a^{14}+\frac{8074}{9}a^{13}+\frac{17840}{3}a^{12}-\frac{21530}{9}a^{11}-\frac{95614}{9}a^{10}+\frac{11876}{3}a^{9}+\frac{107657}{9}a^{8}-3439a^{7}-\frac{24487}{3}a^{6}+\frac{8762}{9}a^{5}+\frac{26435}{9}a^{4}+\frac{2414}{9}a^{3}-\frac{3001}{9}a^{2}-\frac{223}{3}a-\frac{31}{9}$
|
| |
| Regulator: | \( 295522286712 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{13}\cdot(2\pi)^{4}\cdot 295522286712 \cdot 1}{2\cdot\sqrt{40453417591156198845459427294648145741}}\cr\approx \mathstrut & 0.296614277015826 \end{aligned}\] (assuming GRH)
Galois group
$S_7\wr C_3$ (as 21T159):
| A non-solvable group of order 384072192000 |
| The 1165 conjugacy class representatives for $S_7\wr C_3$ |
| Character table for $S_7\wr C_3$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18{,}\,{\href{/padicField/2.3.0.1}{3} }$ | ${\href{/padicField/3.6.0.1}{6} }^{3}{,}\,{\href{/padicField/3.3.0.1}{3} }$ | $21$ | R | ${\href{/padicField/11.12.0.1}{12} }{,}\,{\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.3.0.1}{3} }$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.3.0.1}{3} }^{3}{,}\,{\href{/padicField/13.2.0.1}{2} }^{3}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.9.0.1}{9} }{,}\,{\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.3.0.1}{3} }^{2}$ | $15{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}$ | $18{,}\,{\href{/padicField/23.3.0.1}{3} }$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | $21$ | $15{,}\,{\href{/padicField/37.3.0.1}{3} }^{2}$ | ${\href{/padicField/41.5.0.1}{5} }{,}\,{\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{6}$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.9.0.1}{9} }^{2}{,}\,{\href{/padicField/47.3.0.1}{3} }$ | ${\href{/padicField/53.9.0.1}{9} }{,}\,{\href{/padicField/53.3.0.1}{3} }^{4}$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(7\)
| 7.1.3.2a1.1 | $x^{3} + 7$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ |
| 7.1.3.2a1.1 | $x^{3} + 7$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ | |
| 7.5.3.10a1.3 | $x^{15} + 3 x^{11} + 12 x^{10} + 3 x^{7} + 24 x^{6} + 48 x^{5} + x^{3} + 12 x^{2} + 48 x + 71$ | $3$ | $5$ | $10$ | $C_{15}$ | $$[\ ]_{3}^{5}$$ | |
|
\(596\!\cdots\!909\)
| $\Q_{59\!\cdots\!09}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{59\!\cdots\!09}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{59\!\cdots\!09}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | ||
| Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ |