Normalized defining polynomial
\( x^{21} - 8 x^{20} + 36 x^{19} - 114 x^{18} + 285 x^{17} - 562 x^{16} + 781 x^{15} - 627 x^{14} + \cdots - 3 \)
Invariants
| Degree: | $21$ |
| |
| Signature: | $[1, 10]$ |
| |
| Discriminant: |
\(265283078340996577927735640721\)
\(\medspace = 3^{16}\cdot 151^{10}\)
|
| |
| Root discriminant: | \(25.18\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(3\), \(151\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{159}a^{19}+\frac{19}{159}a^{18}-\frac{73}{159}a^{17}-\frac{70}{159}a^{16}+\frac{76}{159}a^{15}+\frac{11}{53}a^{14}+\frac{11}{53}a^{13}-\frac{23}{53}a^{12}+\frac{40}{159}a^{11}-\frac{24}{53}a^{10}+\frac{4}{159}a^{9}-\frac{19}{159}a^{8}-\frac{5}{53}a^{7}+\frac{32}{159}a^{6}-\frac{61}{159}a^{5}-\frac{20}{159}a^{4}-\frac{23}{53}a^{3}-\frac{40}{159}a^{2}+\frac{58}{159}a+\frac{19}{53}$, $\frac{1}{20\cdots 63}a^{20}-\frac{32\cdots 96}{20\cdots 63}a^{19}+\frac{35\cdots 40}{20\cdots 63}a^{18}-\frac{68\cdots 49}{20\cdots 63}a^{17}-\frac{85\cdots 68}{20\cdots 63}a^{16}-\frac{30\cdots 08}{66\cdots 21}a^{15}+\frac{21\cdots 83}{66\cdots 21}a^{14}-\frac{90\cdots 65}{66\cdots 21}a^{13}-\frac{64\cdots 74}{28\cdots 09}a^{12}-\frac{11\cdots 03}{66\cdots 21}a^{11}+\frac{72\cdots 80}{20\cdots 63}a^{10}-\frac{87\cdots 06}{20\cdots 63}a^{9}+\frac{20\cdots 25}{66\cdots 21}a^{8}+\frac{61\cdots 28}{20\cdots 63}a^{7}-\frac{67\cdots 15}{20\cdots 63}a^{6}-\frac{86\cdots 08}{20\cdots 63}a^{5}-\frac{47\cdots 92}{95\cdots 03}a^{4}-\frac{50\cdots 16}{28\cdots 09}a^{3}+\frac{51\cdots 71}{20\cdots 63}a^{2}+\frac{12\cdots 65}{66\cdots 21}a-\frac{30\cdots 11}{66\cdots 21}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $10$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{18\cdots 39}{66\cdots 21}a^{20}-\frac{42\cdots 56}{20\cdots 63}a^{19}+\frac{18\cdots 31}{20\cdots 63}a^{18}-\frac{57\cdots 14}{20\cdots 63}a^{17}+\frac{14\cdots 74}{20\cdots 63}a^{16}-\frac{27\cdots 81}{20\cdots 63}a^{15}+\frac{11\cdots 19}{66\cdots 21}a^{14}-\frac{83\cdots 80}{66\cdots 21}a^{13}+\frac{12\cdots 22}{95\cdots 03}a^{12}-\frac{74\cdots 83}{20\cdots 63}a^{11}+\frac{79\cdots 83}{66\cdots 21}a^{10}-\frac{41\cdots 86}{20\cdots 63}a^{9}+\frac{58\cdots 27}{37\cdots 71}a^{8}+\frac{10\cdots 03}{66\cdots 21}a^{7}-\frac{21\cdots 18}{20\cdots 63}a^{6}+\frac{68\cdots 37}{20\cdots 63}a^{5}+\frac{19\cdots 22}{28\cdots 09}a^{4}-\frac{98\cdots 94}{95\cdots 03}a^{3}+\frac{14\cdots 62}{20\cdots 63}a^{2}-\frac{47\cdots 96}{20\cdots 63}a+\frac{19\cdots 82}{66\cdots 21}$, $\frac{13\cdots 40}{20\cdots 63}a^{20}-\frac{10\cdots 96}{20\cdots 63}a^{19}+\frac{85\cdots 43}{37\cdots 71}a^{18}-\frac{13\cdots 30}{20\cdots 63}a^{17}+\frac{33\cdots 88}{20\cdots 63}a^{16}-\frac{21\cdots 87}{66\cdots 21}a^{15}+\frac{26\cdots 85}{66\cdots 21}a^{14}-\frac{17\cdots 25}{66\cdots 21}a^{13}-\frac{16\cdots 88}{28\cdots 09}a^{12}-\frac{28\cdots 85}{66\cdots 21}a^{11}+\frac{59\cdots 92}{20\cdots 63}a^{10}-\frac{96\cdots 47}{20\cdots 63}a^{9}+\frac{21\cdots 50}{66\cdots 21}a^{8}+\frac{17\cdots 11}{20\cdots 63}a^{7}-\frac{51\cdots 31}{20\cdots 63}a^{6}+\frac{99\cdots 73}{20\cdots 63}a^{5}+\frac{17\cdots 53}{95\cdots 03}a^{4}-\frac{67\cdots 17}{28\cdots 09}a^{3}+\frac{28\cdots 20}{20\cdots 63}a^{2}-\frac{24\cdots 11}{66\cdots 21}a+\frac{95\cdots 41}{66\cdots 21}$, $\frac{50\cdots 88}{20\cdots 63}a^{20}-\frac{12\cdots 26}{66\cdots 21}a^{19}+\frac{16\cdots 16}{20\cdots 63}a^{18}-\frac{17\cdots 05}{66\cdots 21}a^{17}+\frac{12\cdots 58}{20\cdots 63}a^{16}-\frac{23\cdots 98}{20\cdots 63}a^{15}+\frac{10\cdots 90}{66\cdots 21}a^{14}-\frac{66\cdots 01}{66\cdots 21}a^{13}+\frac{97\cdots 92}{28\cdots 09}a^{12}-\frac{10\cdots 31}{20\cdots 63}a^{11}+\frac{21\cdots 29}{20\cdots 63}a^{10}-\frac{35\cdots 97}{20\cdots 63}a^{9}+\frac{24\cdots 02}{20\cdots 63}a^{8}+\frac{51\cdots 31}{20\cdots 63}a^{7}-\frac{60\cdots 46}{66\cdots 21}a^{6}+\frac{41\cdots 74}{20\cdots 63}a^{5}+\frac{17\cdots 41}{28\cdots 09}a^{4}-\frac{24\cdots 88}{28\cdots 09}a^{3}+\frac{11\cdots 57}{20\cdots 63}a^{2}-\frac{34\cdots 02}{20\cdots 63}a+\frac{12\cdots 81}{66\cdots 21}$, $\frac{20\cdots 59}{95\cdots 03}a^{20}-\frac{35\cdots 64}{28\cdots 09}a^{19}+\frac{12\cdots 75}{28\cdots 09}a^{18}-\frac{28\cdots 82}{28\cdots 09}a^{17}+\frac{53\cdots 73}{28\cdots 09}a^{16}-\frac{60\cdots 94}{28\cdots 09}a^{15}-\frac{11\cdots 97}{95\cdots 03}a^{14}+\frac{68\cdots 27}{95\cdots 03}a^{13}-\frac{55\cdots 32}{95\cdots 03}a^{12}-\frac{11\cdots 66}{28\cdots 09}a^{11}+\frac{59\cdots 48}{95\cdots 03}a^{10}+\frac{16\cdots 10}{28\cdots 09}a^{9}-\frac{24\cdots 90}{28\cdots 09}a^{8}+\frac{95\cdots 25}{95\cdots 03}a^{7}+\frac{44\cdots 65}{28\cdots 09}a^{6}-\frac{20\cdots 12}{28\cdots 09}a^{5}+\frac{82\cdots 82}{28\cdots 09}a^{4}+\frac{12\cdots 69}{95\cdots 03}a^{3}-\frac{11\cdots 28}{28\cdots 09}a^{2}+\frac{57\cdots 88}{28\cdots 09}a-\frac{26\cdots 94}{95\cdots 03}$, $\frac{60\cdots 69}{20\cdots 63}a^{20}-\frac{47\cdots 41}{66\cdots 21}a^{19}+\frac{99\cdots 18}{20\cdots 63}a^{18}-\frac{13\cdots 79}{66\cdots 21}a^{17}+\frac{11\cdots 00}{20\cdots 63}a^{16}-\frac{27\cdots 71}{20\cdots 63}a^{15}+\frac{16\cdots 28}{66\cdots 21}a^{14}-\frac{18\cdots 08}{66\cdots 21}a^{13}+\frac{32\cdots 50}{28\cdots 09}a^{12}+\frac{11\cdots 26}{20\cdots 63}a^{11}+\frac{91\cdots 23}{20\cdots 63}a^{10}-\frac{54\cdots 66}{20\cdots 63}a^{9}+\frac{67\cdots 50}{20\cdots 63}a^{8}-\frac{28\cdots 76}{20\cdots 63}a^{7}-\frac{10\cdots 43}{66\cdots 21}a^{6}+\frac{32\cdots 53}{20\cdots 63}a^{5}+\frac{10\cdots 37}{28\cdots 09}a^{4}-\frac{44\cdots 75}{28\cdots 09}a^{3}+\frac{30\cdots 54}{20\cdots 63}a^{2}-\frac{12\cdots 61}{20\cdots 63}a+\frac{60\cdots 57}{66\cdots 21}$, $\frac{22\cdots 98}{20\cdots 63}a^{20}-\frac{56\cdots 37}{66\cdots 21}a^{19}+\frac{72\cdots 76}{20\cdots 63}a^{18}-\frac{73\cdots 28}{66\cdots 21}a^{17}+\frac{53\cdots 49}{20\cdots 63}a^{16}-\frac{19\cdots 42}{37\cdots 71}a^{15}+\frac{42\cdots 59}{66\cdots 21}a^{14}-\frac{26\cdots 31}{66\cdots 21}a^{13}-\frac{10\cdots 30}{28\cdots 09}a^{12}-\frac{48\cdots 93}{20\cdots 63}a^{11}+\frac{94\cdots 33}{20\cdots 63}a^{10}-\frac{15\cdots 42}{20\cdots 63}a^{9}+\frac{10\cdots 34}{20\cdots 63}a^{8}+\frac{27\cdots 46}{20\cdots 63}a^{7}-\frac{26\cdots 39}{66\cdots 21}a^{6}+\frac{14\cdots 63}{20\cdots 63}a^{5}+\frac{78\cdots 63}{28\cdots 09}a^{4}-\frac{10\cdots 33}{28\cdots 09}a^{3}+\frac{44\cdots 76}{20\cdots 63}a^{2}-\frac{12\cdots 43}{20\cdots 63}a+\frac{34\cdots 15}{66\cdots 21}$, $\frac{31\cdots 91}{66\cdots 21}a^{20}-\frac{25\cdots 88}{66\cdots 21}a^{19}+\frac{11\cdots 40}{66\cdots 21}a^{18}-\frac{34\cdots 30}{66\cdots 21}a^{17}+\frac{84\cdots 91}{66\cdots 21}a^{16}-\frac{16\cdots 01}{66\cdots 21}a^{15}+\frac{21\cdots 17}{66\cdots 21}a^{14}-\frac{15\cdots 26}{66\cdots 21}a^{13}+\frac{29\cdots 04}{95\cdots 03}a^{12}-\frac{37\cdots 19}{66\cdots 21}a^{11}+\frac{14\cdots 95}{66\cdots 21}a^{10}-\frac{25\cdots 86}{66\cdots 21}a^{9}+\frac{19\cdots 84}{66\cdots 21}a^{8}+\frac{11\cdots 46}{66\cdots 21}a^{7}-\frac{12\cdots 28}{66\cdots 21}a^{6}+\frac{44\cdots 34}{66\cdots 21}a^{5}+\frac{11\cdots 42}{95\cdots 03}a^{4}-\frac{18\cdots 83}{95\cdots 03}a^{3}+\frac{88\cdots 86}{66\cdots 21}a^{2}-\frac{29\cdots 92}{66\cdots 21}a+\frac{39\cdots 13}{66\cdots 21}$, $\frac{30\cdots 22}{20\cdots 63}a^{20}-\frac{22\cdots 41}{20\cdots 63}a^{19}+\frac{97\cdots 54}{20\cdots 63}a^{18}-\frac{29\cdots 52}{20\cdots 63}a^{17}+\frac{71\cdots 15}{20\cdots 63}a^{16}-\frac{44\cdots 27}{66\cdots 21}a^{15}+\frac{56\cdots 11}{66\cdots 21}a^{14}-\frac{34\cdots 13}{66\cdots 21}a^{13}-\frac{67\cdots 99}{28\cdots 09}a^{12}-\frac{22\cdots 98}{66\cdots 21}a^{11}+\frac{12\cdots 64}{20\cdots 63}a^{10}-\frac{20\cdots 77}{20\cdots 63}a^{9}+\frac{42\cdots 84}{66\cdots 21}a^{8}+\frac{41\cdots 13}{20\cdots 63}a^{7}-\frac{10\cdots 55}{20\cdots 63}a^{6}+\frac{15\cdots 66}{20\cdots 63}a^{5}+\frac{36\cdots 85}{95\cdots 03}a^{4}-\frac{13\cdots 97}{28\cdots 09}a^{3}+\frac{57\cdots 05}{20\cdots 63}a^{2}-\frac{51\cdots 39}{66\cdots 21}a+\frac{32\cdots 17}{66\cdots 21}$, $\frac{11\cdots 96}{28\cdots 09}a^{20}-\frac{30\cdots 16}{95\cdots 03}a^{19}+\frac{39\cdots 45}{28\cdots 09}a^{18}-\frac{40\cdots 68}{95\cdots 03}a^{17}+\frac{29\cdots 54}{28\cdots 09}a^{16}-\frac{55\cdots 24}{28\cdots 09}a^{15}+\frac{23\cdots 57}{95\cdots 03}a^{14}-\frac{15\cdots 89}{95\cdots 03}a^{13}+\frac{18\cdots 56}{28\cdots 09}a^{12}-\frac{41\cdots 93}{28\cdots 09}a^{11}+\frac{50\cdots 53}{28\cdots 09}a^{10}-\frac{81\cdots 18}{28\cdots 09}a^{9}+\frac{58\cdots 98}{28\cdots 09}a^{8}+\frac{10\cdots 05}{28\cdots 09}a^{7}-\frac{14\cdots 58}{95\cdots 03}a^{6}+\frac{95\cdots 85}{28\cdots 09}a^{5}+\frac{29\cdots 46}{28\cdots 09}a^{4}-\frac{41\cdots 35}{28\cdots 09}a^{3}+\frac{26\cdots 32}{28\cdots 09}a^{2}-\frac{76\cdots 98}{28\cdots 09}a+\frac{26\cdots 53}{95\cdots 03}$, $\frac{32\cdots 03}{54\cdots 53}a^{20}-\frac{13\cdots 87}{28\cdots 09}a^{19}+\frac{56\cdots 77}{28\cdots 09}a^{18}-\frac{17\cdots 58}{28\cdots 09}a^{17}+\frac{41\cdots 13}{28\cdots 09}a^{16}-\frac{26\cdots 93}{95\cdots 03}a^{15}+\frac{33\cdots 64}{95\cdots 03}a^{14}-\frac{21\cdots 69}{95\cdots 03}a^{13}+\frac{11\cdots 48}{28\cdots 09}a^{12}-\frac{12\cdots 16}{95\cdots 03}a^{11}+\frac{72\cdots 15}{28\cdots 09}a^{10}-\frac{11\cdots 98}{28\cdots 09}a^{9}+\frac{26\cdots 44}{95\cdots 03}a^{8}+\frac{19\cdots 57}{28\cdots 09}a^{7}-\frac{60\cdots 50}{28\cdots 09}a^{6}+\frac{12\cdots 18}{28\cdots 09}a^{5}+\frac{14\cdots 16}{95\cdots 03}a^{4}-\frac{57\cdots 98}{28\cdots 09}a^{3}+\frac{35\cdots 53}{28\cdots 09}a^{2}-\frac{35\cdots 16}{95\cdots 03}a+\frac{33\cdots 85}{95\cdots 03}$
|
| |
| Regulator: | \( 2440129.53307 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{10}\cdot 2440129.53307 \cdot 1}{2\cdot\sqrt{265283078340996577927735640721}}\cr\approx \mathstrut & 0.454314701420 \end{aligned}\] (assuming GRH)
Galois group
$C_3^6:D_7$ (as 21T51):
| A solvable group of order 10206 |
| The 96 conjugacy class representatives for $C_3^6:D_7$ |
| Character table for $C_3^6:D_7$ |
Intermediate fields
| 7.1.3442951.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 21 siblings: | data not computed |
| Degree 42 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.7.0.1}{7} }^{3}$ | R | ${\href{/padicField/5.7.0.1}{7} }^{3}$ | ${\href{/padicField/7.6.0.1}{6} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{4}{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.7.0.1}{7} }^{3}$ | ${\href{/padicField/13.6.0.1}{6} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.7.0.1}{7} }^{3}$ | ${\href{/padicField/19.7.0.1}{7} }^{3}$ | ${\href{/padicField/23.6.0.1}{6} }^{3}{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.7.0.1}{7} }^{3}$ | ${\href{/padicField/31.7.0.1}{7} }^{3}$ | ${\href{/padicField/37.7.0.1}{7} }^{3}$ | ${\href{/padicField/41.6.0.1}{6} }^{3}{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.7.0.1}{7} }^{3}$ | ${\href{/padicField/47.7.0.1}{7} }^{3}$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{7}{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.7.0.1}{7} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 3.2.3.8a1.2 | $x^{6} + 6 x^{5} + 21 x^{4} + 44 x^{3} + 60 x^{2} + 57 x + 23$ | $3$ | $2$ | $8$ | $S_3\times C_3$ | $$[2]^{6}$$ | |
| 3.2.3.8a4.3 | $x^{6} + 9 x^{5} + 33 x^{4} + 68 x^{3} + 84 x^{2} + 60 x + 41$ | $3$ | $2$ | $8$ | $S_3\times C_3$ | $$[2, 2]^{2}$$ | |
| 3.6.1.0a1.1 | $x^{6} + 2 x^{4} + x^{2} + 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | |
|
\(151\)
| $\Q_{151}$ | $x + 145$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 151.1.2.1a1.1 | $x^{2} + 151$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 151.1.2.1a1.1 | $x^{2} + 151$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 151.1.2.1a1.1 | $x^{2} + 151$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 151.1.2.1a1.1 | $x^{2} + 151$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 151.1.2.1a1.1 | $x^{2} + 151$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 151.1.2.1a1.1 | $x^{2} + 151$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 151.1.2.1a1.1 | $x^{2} + 151$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 151.3.2.3a1.2 | $x^{6} + 2 x^{4} + 290 x^{3} + x^{2} + 290 x + 21176$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ |