Normalized defining polynomial
\( x^{21} - 8 x^{20} + 36 x^{19} - 114 x^{18} + 285 x^{17} - 562 x^{16} + 781 x^{15} - 627 x^{14} + 169 x^{13} - 27 x^{12} + 434 x^{11} - 868 x^{10} + 760 x^{9} - 92 x^{8} - 397 x^{7} + 225 x^{6} + 212 x^{5} - 441 x^{4} + 355 x^{3} - 154 x^{2} + 34 x - 3 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(265283078340996577927735640721=3^{16}\cdot 151^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 151$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{159} a^{19} + \frac{19}{159} a^{18} - \frac{73}{159} a^{17} - \frac{70}{159} a^{16} + \frac{76}{159} a^{15} + \frac{11}{53} a^{14} + \frac{11}{53} a^{13} - \frac{23}{53} a^{12} + \frac{40}{159} a^{11} - \frac{24}{53} a^{10} + \frac{4}{159} a^{9} - \frac{19}{159} a^{8} - \frac{5}{53} a^{7} + \frac{32}{159} a^{6} - \frac{61}{159} a^{5} - \frac{20}{159} a^{4} - \frac{23}{53} a^{3} - \frac{40}{159} a^{2} + \frac{58}{159} a + \frac{19}{53}$, $\frac{1}{2007891093721433157363} a^{20} - \frac{3288201693760336796}{2007891093721433157363} a^{19} + \frac{358259289565241577740}{2007891093721433157363} a^{18} - \frac{687956137157573821549}{2007891093721433157363} a^{17} - \frac{851801996874308000168}{2007891093721433157363} a^{16} - \frac{306709621306524483408}{669297031240477719121} a^{15} + \frac{217610356619706020183}{669297031240477719121} a^{14} - \frac{9019707201948567665}{669297031240477719121} a^{13} - \frac{64714493744650386074}{286841584817347593909} a^{12} - \frac{113566410270049340403}{669297031240477719121} a^{11} + \frac{727350768048323261380}{2007891093721433157363} a^{10} - \frac{876558056328646972006}{2007891093721433157363} a^{9} + \frac{204461908073046473725}{669297031240477719121} a^{8} + \frac{616628219799290762528}{2007891093721433157363} a^{7} - \frac{670948336867394173015}{2007891093721433157363} a^{6} - \frac{863583394412309945708}{2007891093721433157363} a^{5} - \frac{4761621904903560492}{95613861605782531303} a^{4} - \frac{50667713767101846916}{286841584817347593909} a^{3} + \frac{510915066525359351371}{2007891093721433157363} a^{2} + \frac{121833033974444500165}{669297031240477719121} a - \frac{302593785774957763311}{669297031240477719121}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2440129.53307 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10206 |
| The 96 conjugacy class representatives for t21n51 are not computed |
| Character table for t21n51 is not computed |
Intermediate fields
| 7.1.3442951.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.6.8.7 | $x^{6} + 6 x^{5} + 6 x^{3} + 72$ | $3$ | $2$ | $8$ | $S_3\times C_3$ | $[2]^{6}$ | |
| 3.6.8.9 | $x^{6} + 6 x^{5} + 9$ | $3$ | $2$ | $8$ | $S_3\times C_3$ | $[2, 2]^{2}$ | |
| 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $151$ | $\Q_{151}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.6.3.2 | $x^{6} - 22801 x^{2} + 17214755$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |