Normalized defining polynomial
\( x^{21} + 3x - 1 \)
Invariants
| Degree: | $21$ |
| |
| Signature: | $[1, 10]$ |
| |
| Discriminant: |
\(1096847537861479818385982521381124421\)
\(\medspace = 3^{21}\cdot 127\cdot 4165522027\cdot 198210546660683\)
|
| |
| Root discriminant: | \(52.02\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(3\), \(127\), \(4165522027\), \(198210546660683\)
|
| |
| Discriminant root field: | $\Q(\sqrt{31457\!\cdots\!52021}$) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $10$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a^{20}+3$, $a^{13}-a^{6}+1$, $a^{11}+2a^{6}+2a$, $a^{18}-a^{17}+a^{15}-a^{14}+a^{12}-a^{11}+a^{9}-a^{8}+a^{6}-a^{5}+a^{3}-a^{2}+1$, $2a^{20}-a^{19}-a^{18}+2a^{17}-a^{16}-a^{15}+2a^{14}-2a^{12}+3a^{11}-3a^{9}+4a^{8}-a^{7}-3a^{6}+3a^{5}-4a^{3}+3a^{2}+2a$, $a^{19}+a^{18}+2a^{17}+2a^{16}+3a^{15}+2a^{14}-a^{12}-3a^{11}-3a^{10}-4a^{9}-2a^{8}-a^{7}+2a^{5}+2a^{4}+6a^{3}+5a^{2}+3a-1$, $2a^{20}+a^{18}-a^{17}+5a^{15}-a^{14}+a^{13}-4a^{12}+2a^{11}+a^{10}-5a^{9}-a^{8}-4a^{7}+8a^{6}-2a^{5}-a^{4}+2a^{3}+2a^{2}+9a-4$, $3a^{20}+5a^{19}+7a^{18}+9a^{17}+11a^{16}+13a^{15}+14a^{14}+15a^{13}+15a^{12}+14a^{11}+13a^{10}+11a^{9}+9a^{8}+7a^{7}+5a^{6}+3a^{5}+a^{4}-3a^{2}-5a+1$, $2a^{18}+2a^{17}+2a^{16}+2a^{15}+a^{14}-a^{12}-3a^{11}-3a^{10}-2a^{9}-3a^{8}+a^{7}+3a^{5}+3a^{4}+4a^{3}+3a^{2}+3a-3$, $3a^{19}+a^{18}-2a^{17}-2a^{15}-4a^{14}-2a^{12}-3a^{11}+4a^{10}+2a^{9}-a^{8}+7a^{7}+4a^{6}-5a^{5}+3a^{4}+2a^{3}-10a^{2}-2a+1$
|
| |
| Regulator: | \( 5956635581.61 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{10}\cdot 5956635581.61 \cdot 1}{2\cdot\sqrt{1096847537861479818385982521381124421}}\cr\approx \mathstrut & 0.545414378215 \end{aligned}\] (assuming GRH)
Galois group
| A non-solvable group of order 51090942171709440000 |
| The 792 conjugacy class representatives for $S_{21}$ |
| Character table for $S_{21}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 42 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.14.0.1}{14} }{,}\,{\href{/padicField/2.7.0.1}{7} }$ | R | ${\href{/padicField/5.11.0.1}{11} }{,}\,{\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.3.0.1}{3} }{,}\,{\href{/padicField/5.2.0.1}{2} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ | $20{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.10.0.1}{10} }{,}\,{\href{/padicField/11.7.0.1}{7} }{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | $15{,}\,{\href{/padicField/13.6.0.1}{6} }$ | $19{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.10.0.1}{10} }{,}\,{\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.5.0.1}{5} }$ | ${\href{/padicField/23.7.0.1}{7} }{,}\,{\href{/padicField/23.5.0.1}{5} }{,}\,{\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.12.0.1}{12} }{,}\,{\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.9.0.1}{9} }{,}\,{\href{/padicField/31.5.0.1}{5} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{3}{,}\,{\href{/padicField/37.1.0.1}{1} }^{3}$ | ${\href{/padicField/41.14.0.1}{14} }{,}\,{\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.9.0.1}{9} }{,}\,{\href{/padicField/43.5.0.1}{5} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }$ | ${\href{/padicField/47.13.0.1}{13} }{,}\,{\href{/padicField/47.5.0.1}{5} }{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | $16{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{3}$ | ${\href{/padicField/59.12.0.1}{12} }{,}\,{\href{/padicField/59.9.0.1}{9} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.1.3.3a1.2 | $x^{3} + 6 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $$[\frac{3}{2}]_{2}$$ |
| 3.6.3.18a99.1 | $x^{18} + 6 x^{16} + 15 x^{14} + 6 x^{13} + 26 x^{12} + 27 x^{11} + 45 x^{10} + 42 x^{9} + 66 x^{8} + 54 x^{7} + 76 x^{6} + 78 x^{5} + 60 x^{4} + 35 x^{3} + 45 x^{2} + 36 x + 17$ | $3$ | $6$ | $18$ | 18T234 | not computed | |
|
\(127\)
| 127.1.2.1a1.2 | $x^{2} + 381$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 127.2.1.0a1.1 | $x^{2} + 126 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 127.2.1.0a1.1 | $x^{2} + 126 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 127.15.1.0a1.1 | $x^{15} - 5 x + 31$ | $1$ | $15$ | $0$ | $C_{15}$ | $$[\ ]^{15}$$ | |
|
\(4165522027\)
| $\Q_{4165522027}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $8$ | $1$ | $8$ | $0$ | $C_8$ | $$[\ ]^{8}$$ | ||
|
\(198210546660683\)
| $\Q_{198210546660683}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $7$ | $1$ | $7$ | $0$ | $C_7$ | $$[\ ]^{7}$$ | ||
| Deg $8$ | $1$ | $8$ | $0$ | $C_8$ | $$[\ ]^{8}$$ |